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ABSTRACT 

Throughout the Holocene, bison have always been more abundant east of the Rocky Mountains 

with considerably fewer bison found west of the Rocky Mountains. It is likely that drought 

frequency and snowfall characteristics have influenced the pattern of historical bison occurrence 

across the northwest United States. Using monthly average snow and precipitation data from the 

past several decades, average April snow water equivalent (SWE) and summertime drought 

frequency were analyzed at sites across the northwest United States. A climatic stress index 

(CSI) was developed by combining average SWE and drought frequency for sites, as these are 

the climate factors that will most likely affect bison success. The results of the CSI revealed that 

locations west of the Divide experience heavier snowfall and a greater frequency of droughts, 

thus presenting a “double whammy” of climate conditions that bison would have to endure. The 

locations of highest combined snow and drought frequencies coincide with locations of low 

bison occurrence.  
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CHAPTER 1: INTRODUCTION

The distribution of animal populations is principally limited by the availability of food, 

shelter, and competitive interactions with other animal species. Other factors, however, also 

influence populations, including the role of climate. While the influence of climate has often 

been mentioned, it has never been fully explored as a possible cause for the lack of bison west of 

the Continental Divide (CD) in the northwest United States (Moore 2002), despite what appears 

to be suitable grazing habitats (Grayson 1982, Burkhardt 1996). Understanding the reasons for 

the distribution of bison is ecologically critical as it is the largest mammal in North America 

and has exerted a significant impact on the landscape (Lott 2002). Thus, many have attempted 

to investigate the puzzling distribution pattern of bison abundance (Mack and Thompson 1982, 

Daubenmire 1985, Van Vuren 1987, Flores 1991, Garret 2001, Martin and Szuter 1999 and 2002, 

Lyman and Wolverton 2002, Moore 2002). One area that has received less attention, but may be 

of exceptional importance, is the role of climatic variability. This analysis will show that drought 

frequency and snowfall have likely influenced the pattern of historical bison distribution across 

the northwest United States.

Historical documents from early explorers and traders provide a significant resource 

of knowledge on the natural landscape of the Northwest before European settlement. During 

the 1804-1806 Corps of Discovery Expedition leaders Meriweather Lewis and William Clark 

meticulously recorded daily observations and experiences on the trail. In addition to botanical, 

geological, and meteorological documentation, the journals chronicle hunting conditions along 

the trail as detailed as the exact number and species of game killed per day: “Every copse 

of timber appears to have elk or deer. D. killed 3 deer, I killed a buffalo, York 2, R. Fields 

one.  Captain Clark, 9 September 1804” (Moulton 1983). Bison appear to have been the 

preferred game when it was abundant because one bison could supply as much meat for the 
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expedition as 5-6 deer in a single day (Martin and Szuter 1999). It is clear from their journal 

entries that bison game became scarce as soon as they crossed westward over the Continental 

Divide, without an apparent significant change in plant communities, but why? What caused 

bison to become absent from the headwaters of the Missouri River westward?

Figure 1. Bison along the Missouri River. Painting by Karl Bodmer/Historical 
Picture Archive/Corbis (“Lewis and Clark”, 2004 www.nationalgeographic.com)
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Figure 2. Missouri Headwaters State Park, Montana. This is the approximate location 
where Lewis and Clark began to observe a decline in bison numbers. This area also 

represents grass communities suitable for bison.

Using Lewis and Clark’s journals, Martin and Szuter (1999) mapped the abundance of 

game recorded along the Lewis and Clark Trail. Game was plentiful along the Yellowstone and 

Missouri Rivers in Montana but scarce west of the CD - observations that are consistent with 

archaeological evidence of relative bison and elk scarcity in this region during the late Holocene 

~450-2000 years B.P (Van Vuren 1987). Why such a difference in population sizes has been a 

topic of great interest that has been principally examined from an ecological perspective. Few 

(e.g., Daubenmire 1985) have explored how climate may affect the suitability of rangeland for 

bison west of the Continental Divide. Moreover, most studies regarding bison and climate have 

been conducted at localized scales to understand the dynamics of current bison populations (e.g., 

Yellowstone National Park) (Van Camp 1975, Meagher 1976, Turner 1994, Farnes 1996) Thus, 
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an opportunity exists to address, at a regional scale and from a climatological perspective, the 

question: Have climatic conditions west of the Continental Divide precluded historical bison 

occurrence?

The purpose of this study is to explore the relationship between climatic conditions, 

suitable grazing habitat, and bison occurrence in the Northwest United States (NW U.S.). This 

will be accomplished by examining general climatology patterns across the NW U.S. region, 

and more specifically, by comparing inter- and intra-annual meteorological drought frequency 

and snowfall variables between known locations of suitable bison habitat east and west of the 

Continental Divide. In addition to providing a geographic/climatalogical perspective into the 

problem of bison distribution, the results of this investigation should contribute additional insight 

on current climate variability regions; supplementing previous work on climate regionalization 

in the Northwest United States (Mitchell 1976). This research should also be useful because of 

increased interest in bison production in the areas within the NW U.S. (Urness 1989, Moore 

2002).

In this study, I explore three areas that will provide insights on the historical patterns of 

bison occurrence across the NW U.S. Specifically, I address three questions:

1. Do significant differences in the spatial patterns of variability of inter-annual, intra-annual, 

and sustained drought frequency exist across the Northwest United States?

2. Are there significant differences in snowfall amounts and snow water equivalents (SWE) 

between locations east and west of the Continental Divide?

3. Given suitable opportunities for grazing and reproductive activities, what is the threshold 

of climate variability that bison populations could endure in this region?

Review of Literature

The question of Holocene bison abundance west of the Continental Divide has been an 

active topic of debate among researchers for decades (Moore 2002). The topic is especially 

contentious because the precise distribution and abundance of bison in the NW U.S. throughout 
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the Holocene has not been completely resolved (Lott 2002), and because there has not been a 

recent comprehensive survey of archeological bison evidence for the Northwest United States 

(Van Vuren and Bray 1985). Bison remains continue to be unearthed, and bison populations 

west of the Rockies were exterminated over 100 years ago, leaving researchers few present day 

analogues for a complete understanding of distribution patterns (Van Vuren 1987). However, it 

can be concluded from archeological data and the writings and descriptions of early explorers 

and Indians that bison occurred throughout the NW U.S., but were only abundant east of the 

Rocky Mountains (Mack and Thompson 1982, Daubenmire 1985, Van Vuren and Bray 1985, Van 

Vuren 1987, Flores 1991, Garret 2001, Martin and Szuter 1999 and 2002, Lyman and Wolverton 

2002, Moore 2002).

What factors have controlled bison distribution in the Northwest United States? Four main 

arguments exist on the cause of low bison abundance west of the CD: 1) Human predation 

(Martin and Szuter 1999, 2002), 2) Poor forage (Mack and Thompson 1982), 3) A combination 

of human predation, forage quality, and migration obstacles (Van Vuren 1987, Lyman and 

Wolverton 2002), and 4) Climatic factors including winter severity (Daubenmire 1985, Bjornlie 

and Garret 2001) and drought (Flores 1991).

General Bison Ecology

Until the late 1800s, the Plains bison, (Bison bison) were one of the most abundant mammals 

in North America (Lott 2002). Bison ranged from Great Slave Lake in Canada south into 

Mexico, and from eastern Oregon to the Atlantic Ocean. Their abundance was highest, however, 

in the Great Plains (Lott 2002), and because of the advancement of European-descent settlers 

associated with the westward expansion of the United States, bison numbers were reduced to 

near extinction by over hunting (Van Vuren 1987). Currently, bison populations are limited 

to isolated herds on ranches, reserves and parks, including free-ranging herds in Yellowstone 

National Park in Wyoming and the National Bison Range in Montana.

Throughout much of the Holocene, bison, in addition to elk (Cervus elaphus), pronghorn 
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(Antilocarpa americana), white-tailed (Odocoileus virginianus) and mule deer (Odocoileus 

nemonius) were the dominant grazers of the Great Plains grassland communities. Bison are 

considered to have been an important species because of their beneficial role in the nitrogen 

cycling process and promotion of species richness through grazing patterns (Knapp et al. 

1999). Bison diets will vary based on the habitat, but in general, bison are grazers of primarily 

grasses and sedges (Reynolds and Peden 1987), but will forage for herbs and occasionally 

browse woody plants (Meagher 1976). They are generally considered “bulk feeders”, selecting 

forage based primarily on quantity of forage, rather than quality, compared to elk (Wallace et 

al. 1995). Notwithstanding, grazing patterns can to some degree be predicted based on patterns 

of precipitation or fire (Risser 1990). For example, bison tend to prefer recently burned areas, 

favoring new-growth grass, which is believed to be an important mechanism for maintaining 

grassland species diversity (Shaw and Carter 1990, Knapp et al. 1999).

Figure 3. Map of major grassland-steppe communities based on 
Kutchler’s Potential Vegetation (1964).
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Figure 4. The distribution of suitable grassland habitat for bison 
across the Northwest United States. Areas highlighted in red 

represent zones of comparatively low bison abundance, while 
green areas represent high bison abundance.

Bison and Snow

Previous research has attempted to quantify the point at which snow becomes a limiting 

factor for bison success during winter (Wallace et al. 1995, Turner et al. 1994, Meagher 1976). 

Most of these studies have used snow depth (distance from surface to ground) property rather 

than snow water equivalent (volume of water from melting snow), because snow depth values 

are easier to obtain when doing local-scale studies of bison behavior. Reynolds and Peden (1987) 

determined that bison in Yellowstone were able to forage in depths up to 114 cm, but moved to 

areas of less snow cover when depths were greater than 127 cm. Daubenmire (1985) offered that 

increased snow depth in the valleys of western Montana is a likely hindrance to foraging, and 

cites several historical accounts of bison demise during severe winters in Idaho and Utah. His 

hypothesis focused on snow depth rather than forage quantity/quality, because the steppe species 

east and west of the Divide in Montana, while of different species composition, are both suitable 
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for grazing. In addition, he notes that bison herds were historically abundant in the steppe habitat 

of western Montana, and the current herds in the National Bison Range (west of the CD) have 

done well for decades. According to his research, bison can move up to ~75 cm of snow with 

their heads, but cannot forage in either deeper or crusted over snow (Figure 5). He postulated that 

attempts to cross over the Continental Divide through mountain passes were thwarted by deeper 

snows encountered on the western slopes. Daubenmire’s conclusions of low bison abundance 

due to increased snow depth are based on historical accounts, and do not include climate data.

Others have found that snow density also influences foraging behavior, and may be more 

important to consider (Turner et al.1994). In addition to snow depth, snow density and hardness will 

influence foraging ability (Turner et al. 1994, Farnes 1999). In general, the density of fresh snow is 

inversely related to temperature; therefore, it could be expected that snow densities will be greater 

at lower elevations, if all other factors are equal. But after the snow falls, density is influenced by 

other factors such as wind abrasion, and melting and refreezing (http://www.or.nrcs.usda.gov/snow/ 

about/swe.html). An additional consideration that has been noted is that deep or high-density snow 

associated with severe winters presents an especially difficult challenge for bison calves, which is a 

concern if snow falls late in the season during the onset of calving season (late April-May) (Reynolds 

and Peden 1987). It has been observed that snow depths greater than 50 – 60 cm can prevent calves 

from foraging (Van Camp 1975).

A review on the studies of winter grazing habits of bison in snow in the Slave River basin 

of Canada and Yellowstone National Park (Wallace et al. 1995, Turner et al. 1994, Meagher 1976) 

indicate the point at which snow becomes a limiting factor is complex and unclear. It is known, 

however, that bison cannot cope well with snow that is deep, heavy, or crusted over, because these 

conditions restrict forage availability, and increase the energy costs of foraging and mobility (Meagher 

1976, Telfer and Kelsall 1984, Daubenmire 1985, Fancy and White 1987, Turner et al. 1994, Farnes 

1999, Bjornlie and Garret 2001). Telfer and Kelsall (1984) used chest height, foot loading and 

behavior to calculate indices of snow coping ability for several North American ungulates, those 

with higher indices occurred in snowier regions. Of the species studied, pronghorn, short-grass plains 
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specialists, had the lowest indices. Elk, white-tailed deer and bison tolerate the shallow soft snow of 

the southern boreal forest. In order of decreasing adaptation to deep snow foraging across regions 

in Canada south into Montana and Wyoming, bison ranked second to last (Pronghorn antelope) 

following caribou, moose, wapiti, deer, and bighorn sheep (Telfer and Kelsall 1984).

Figure 5. Bison foraging in snow. Bison use their broad heads 
as plows to remove snow to access the vegetation below. Snow 
that is dense or compacted requires greater effort than powdery 

snow. National Park Service photo by Tom McHugh.

The deleterious effects of heavy snowfall associated with severe winters on bison is made 

particularly evident by a study reporting that herd populations decreased up to 50 percent in some 

cases, after the heavy snowfalls during the severe winters of 1956-57 and 1970-71 (Meagher, 1976). 

This study lends weight to the assertion made by Turner et al. (1994) that “winter range conditions 

are the primary determinant of ungulate survival and reproduction in Yellowstone.”1 So, while it is 

unquestionable that bison in general are adapted for cold, snowy climates, considering their thick 

coats of fur and broad heads used to plow through snow, too much (particularly heavy) snow is likely 

1. The following excerpt was taken from The National Park Service “Morning Report”, on June 15th 1995: The intensity and duration of the past winter 
has taken its toll on bison living in the interior of the park. Winter in the Lake area continued well into spring. As of May 5th, Lake ranger station recorded 40 inches 
of snow, with more still falling. The severity of the winter causes large-scale movements and mortality among the small bison population that winters in the Lake area. 
A number of bison made their way over Sylvan Pass out the East Entrance and to the North Fork of the Shoshone River. Since April, bison mortality has increased 
…As of May 5th, a total of 23 carcasses had been found in these areas… The mortality toll will likely continue until there is significant green-up in the Yellowstone 
Lake area. (Daniel Reinhart, in “The Buffalo Chip”, Resource Management newsletter).
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the main limiting factor for winter survival (Meagher 1976, Daubenmire 1985, Turner et al. 1994, 

Bjornlie and Garret 2001). Thus, the question arises: are snowfall characteristics between the west and 

east sides of the continental divide significant enough to contribute to the geographical differences in 

bison populations?

Bison and Drought

In addition to snowfall, drought is also important to consider as a climatic variable 

that affects bison distribution and abundance. A paleoclimatic study based on tree-ring 

reconstructions of drought along the Colorado Front Range has provided evidence that a 

severe and persistent drought of the mid- 19th century in the western plains likely increased 

the vulnerability of bison herds to the decimation by humans (Woodhouse et al. 2002). In 

Yellowstone National Park, Frank and McNaughton (1992) reported that a severe drought in the 

late 1980’s, followed by a winter of heavy snowfall was responsible for a reduction in the local 

bison population by ~50%. While bison are adapted to the cycles of drought intrinsic to the short 

grass/steppe prairies, the frequency and duration of drought spatially varies across the western 

U.S., therefore it is possible that the threshold of this tolerance is exceeded in some locations, 

and has historically restricted bison populations (Woodhouse et al. 2002). For example, Knapp 

et al. (2004) identified a core region of persistent drought within the interior Pacific Northwest. 

This area within central Oregon was identified as within an air mass transition zone identified 

by Mitchell (1976), where persistent droughts are more frequent than any other location in the 

continental United States (Cook et al., Knapp et al. 2004).

These studies provide supporting evidence that the frequency of droughts combined 

with high snowfall in the interior NW U.S. may explain the lack of bison occurrence in regions 

that appear to have sufficient food resources to support bison herds. Locations with a greater 

frequency of droughts and heavy snowfall could be considered a climatological “double 

whammy”, thus presenting greater challenges to foraging and reproductive activities, and 

possibly either restricting or excluding bison populations. The results of this hypothesis may 
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have implications resolving the debate of bison distributions and current bison reintroduction 

plans to the NW U.S.

Human Predation

The human predation model is similar to Martin’s (1984) “Pleistocene Overkill” 

hypothesis of the extinction of North American megafauna because of the arrival of humans. 

This model explains that Indian hunting activities reduced the abundance of game. From the 

journal entries of Lewis and Clark, Martin and Szuter (1999) discovered a spatial pattern of bison 

abundance in Montana east of the Rockies related to “war zones”, or regions of dispute between 

groups such as the Sioux, Crow, and Pawnee nations. These areas would be avoided by hunting 

parties; therefore game abundance would be greater. Martin and Szuter (1999, 2002) contend that 

bison would be abundant in “game sink” areas, such as southeastern Washington, in the absence 

of human predation.

Lyman and Wolverton (2002) have disputed the validity of the human predation 

explanation stating that bison abundance throughout the entire Holocene was never as great in 

southeastern Washington as it was in Montana during the time of the Lewis and Clark expedition 

(Figure 6). They support an “environmental alternative” explanation first proposed by Van Vuren 

(1987) that explains low bison abundance in these areas “resulted from low carrying capacity and 

from periodic local extinctions followed by slow rates of colonization” (Van Vuren 1987). This 

explanation is based on the “mosaic of habitats” characteristic of the Pacific Northwest, because 

of the physiographic diversity compared to the relative homogeneity of the grasslands east of 

the Rockies (Van Vuren 1987). Immigration rates would be slower in the west of the CD after 

local extirpations caused by severe winters or human hunting, because bison populations were 

disjunct, thwarted by a landscape of physiographic features such as mountains, canyons, and 

deserts (Van Vuren 1987).
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Figure 6. Bison kill sites (archeological evidence of a bison kill) for past 
10,000 years (Lyman and Wolverton 2002).

Forage Quality and Quantity

Proponents of the “low forage” hypothesis assert that the protein content of forage 

in the Palouse prairies of the Pacific Northwest is inadequate to support large herds of bison 

(Johnson 1951, Mack and Thompson 1982). This hypothesis is not supported by the Pleistocene 

fossil record of the Intermountain region, which indicates that bison and other species of the 

Pleistocene megafauna thrived in this region until the extinction event (Grayson 1982, Burkhardt 

1996). Bison survived the extinction and evidence indicates that they continued to thrive in 

the region until the 19th century (Van Vuren and Bray 1985, Urness 1989, Burkhardt 1996). In 

addition, currently existing bison herds have thrived for decades on the National Bison Range 

in Montana, which is of similar bunchgrass species composition as grasslands further west in 

Washington, Oregon, and Idaho. There is no compelling evidence that forage quantity is higher 

on the shortgrass prairies on the eastern slopes of the Rocky Mountains than the grasslands 

further west. In fact, while the distribution of forage quality and quantity across the region has 

been debated, very little empirical data have been presented to describe the regional patterns of 

forage productivity.
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Holocene Bison Distribution and Abundance in the NW U.S.

Based on fossil evidence, it is generally accepted that bison were distributed throughout 

the NW U.S., but only abundant in southeastern Idaho, and east of the Continental Divide 

(Osborne 1953, Van Vuren and Bray 1985, Lyman 2004). In eastern Washington, there are more 

than 50 archaeological sites that have produced bison, but with the exception of a few, these 

sites have produced remains of only a few individuals (Lyman, 2004). Interpretation of fossil 

evidence in the Great Plains suggest that bison abundance was highest between 6,000-9,000 

years B.P., decreased drastically in the mid-Holocene between 6,000-4,000 B.P., and increased 

again ~3,000 years ago (Alford 1973). These fluctuations in abundance have been linked to 

a change in climate from moister, cooler conditions in the early Holocene to a drier, warmer 

climate in the mid-Holocene (Lyman 1992). The “Altithermal” period, from ~8,000-4,500 B.P. 

should be the period of lowest mammalian richness in the Columbia Basin during the Holocene 

based on palynological data (Lyman 1992).Lyman (1992) tested this hypothesis by compiling 

archeological site data in the Columbia Basin, and found that the mammalian fauna data indicate 

a steady increase over the last 10,000 years, refuting the hypothesis based on climate alone. He 

cautions the interpretation of mammalian abundance based on the data due to the confounding 

effect on human prey selection behaviors. The perceived decrease in large mammalian fauna, 

rather than an indication of decreased abundance due to climate conditions, may be due to a shift 

in cultural prey selection habits (Lyman 1992).

To understand bison abundance as a function of climate variability, it is important to 

establish the range of conditions tolerated. The main assumption held in this project is that while 

temperature and moisture conditions have oscillated, the spatial pattern of variation has remained 

fairly consistent for the past millennia relative to the last 10,000 years. Since the relationship 

between moisture variability and bison occurence for this region will be evaluated using climate 

data for the current century, it is further assumed- based on sufficient evidence- that comparative 

bison abundance has not regionally shifted significantly in the northwest since the late Holocene. 

Additionally, based on paleoclimatic evidence, it is likely that drought severity and frequency 
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of the current century are moderate compared to the range of drought variability of the past 

millennia (Woodhouse and Overpeck 2000, Knapp et al. 2002).

Summary of Past Research

It is clear from the literature that bison were more abundant on the grasslands east of the 

Rocky Mountains than on the grasslands of the Pacific Northwest (Mack and Thompson 1982, 

Daubenmire 1985, Van Vuren and Bray 1985, Van Vuren 1987, Flores 1991, Garret 2001, Martin 

and Szuter 1999 and 2002, Lyman and Wolverton 2002, Moore 2002). What has not been fully 

resolved, as indicated by the ongoing debates, is the causal factor/s of this historical pattern. The 

explanations have implicated forage quality and quantity (Johnson 1951, Mack and Thompson 

1982), human predation at the regional scale of the NW U.S. (Martin and Szuter 1999), snowfall 

depth (Meagher 1976, Daubenmire 1985), and drought (Flores 1991) at more localized scales. 

The most compelling are explanations that account for the inter-relationship of all of these 

factors (Van Vuren 1987, Lyman and Wolverton 2002). These studies have greatly improved the 

understanding of bison ecology; however, continued research is necessary to augment certain 

gaps within the body of research. Most notable is that a better understanding of the influence 

of regional climate patterns using empirical data has not been attempted. And while it has been 

documented that heavy snowfall and low rainfall can adversely affect bison at localized scales, 

what has not been examined is whether bison occurrence is influenced by regional patterns of 

recorded snow and rainfall. This study will contribute to the research on bison in the NW U.S. by 

addressing this particular angle from a data driven, geographical approach.
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CHAPTER 2: METHODS

Study Area Characteristics

The Columbia River Basin province within the Northwest United States extends from 

Washington and Oregon east of the Cascades, into western Montana and Wyoming (49°N/109°W 

to 42°N/121°W) (Figure 7). The climate of the Interior Columbia Basin is highly diverse due to 

complex physiography. The Cascades and Rocky Mountains are the most dominant landform 

features that control the influences of three air mass types: cool, moist air from the Pacific; 

continental air from the east and south which is cold and dry in the winter and hot in the summer; 

and dry/cold arctic air (Ferguson 1999).

Figure 7. Physiographic characteristics of the study area.
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Figure 8. Map of places mentioned throughout the text.

There are three general climate regions identified within the Basin: the temperate desert 

division (central Oregon and Washington), temperate steppe division (Palouse prairie across 

southwest Washington into Idaho), and the temperate desert mountain division, which includes 

the intermountain semidesert province (northeast Oregon, northern Idaho, and western Montana) 

(Figure 9). Seasonal precipitation is the primary factor that distinguishes these provinces. 

Figure 10 illustrates the differences in seasonal precipitation averages across the NW U.S. 

Approximately half of the annual precipitation in Montana east of the CD falls in the summer 

months, whereas summer precipitation in central Washington and Oregon is approximately 10 

percent of the annual precipitation total. In Figure 11, climographs for four climate divisions 

across the NW U.S. further demonstrate the major difference in seasonal precipitation patterns. 

These four divisions, southeast Washington, north central Oregon, central Montana, and 
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southeast Idaho, represent suitable grassland habitat for bison. Central Montana and southeast 

Idaho are areas of higher reported historical bison occurrence, and the areas within southeast 

Washington and north central Oregon have lower reported historical bison occurrence (Osborne 

1953, Van Vuren and Bray 1985, Lyman 2004).

Figure 9. Bailey’s major ecological divisions.
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Figure 10. Average seasonal precipitation by climate division. Monthly data (1895-2004) from 
the National Climatic Data Center (<http://www.ncdc.noaa.gov/oa/ncdc.html>, 2005).
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The temperate desert division region is the driest of the divisions, with increasing 

summertime aridity west towards the rainshadow of the Cascades. With the exception of 

occasional convective rainfall events, summer in this province is the dry season. During the 

long and cold winters, this area can receive between 40-80 cm. of snowfall, because of maritime 

air mass incursions, which supply most of the year-round moisture for this province (Ferguson 

1999). Temperature ranges of the temperate desert are high between winter and summer (Bailey, 

1995). The vegetation in this region is dominated by shrub-steppe species, including Artemisia 

tridentata (big sagebrush), Purshia tridentata (bitterbrush), and bunch grasses (Hessburg et al, 

2000).

Figure 12. Sagebrush-Steppe community in Gingko State Park, central Washington 
(photo from Washington State University, 2004. <http://www.wsu.edu/~wsherb/>).
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The semiarid temperate steppe division (includes the Palouse and Great Plains prairies), 

which includes southeastern Washington and extends into western Idaho and east of the Rocky 

Mountains in Montata, receives higher annual precipitation than the temperate desert division, 

most of which occurs in the winter, and temperatures tend to be cooler. The steppe vegetation, 

also known as shortgrass prairie, has a greater diversity of grass species, with Buchloe 

dactyloides (buffalo grass) as the most typical of these regions (Bailey 1995).

Figure 13. Camas Prairie in western Idaho  
(Stock image, 2004 <http://www.stckxchng.com>).
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Figure 14. Zumwalt Prairie in northeastern Oregon (Nature 
Conservancy 2004 “Zumwalt Prairie” <http://www.nature.org/ 

wherewework/northamerica/states/oregon/>).

The temperate steppe mountain division which crosses from eastern Oregon across 

northern Idaho into western Montana is the most complex division, but overall is the coldest 

region of the basin, with milder summer temperatures, and higher annual moisture (Hessburg 

et al. 2000). Snowfall densities tend to be lower than the snowfall on the western edge of the 

Cascades steppe division due to colder winter temperatures (Ferguson 1999). Summertime 

convective storms are concentrated east of the Divide in western Montana, with incursions of 

moisture from the Gulf of Mexico (Burkhardt 1996). The intermountain semidesert ecological 

regime, located within this zone is dominated by sagebrush steppe vegetation.
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Figure 15. Flathead Valley of northwestern Montana.  
(Stock image, 2004 <http://www.stckxchng.com>).

The landscape features of the NW U.S. control the influence of the dominant air mass 

types, the maritime polar and continental arctic and polar air masses. Movement of these 

air masses determines the timing of the seasonal precipitation maximum- the significant 

distinguishing factor between the climate east and west of the Divide in the basin. From the 

eastern Cascades region the season of maximum precipitation grades from November/December 

to January/Febuary at higher elevations to the easternmost edge of the Northern Rockies region 

(western Montana), the season of maximum precipitation grades from November - December to 

May – June (Mock 1996).
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Data

Three variables of climate that would most likely affect bison success were examined: 

snow water equivalent, snow depth, and precipitation. These data were collected within the 

study area based on the longest continuous records. Data stations with more than 20% missing 

data values were eliminated, and missing data of the remaining stations were calculated using 

regression methods (snow course) or listwise deletion (precipitation) to minimize bias. Snow 

data were examined for a single month (April), so a regression method was used to estimate 

these missing snow values; whereas precipitation was analyzed by season, therefore listwise 

deletion would not affect the dataset to the same degree as this method applied to the snow data. 

Stations with records that extends back at least to the early 1950s to the year 2000 were selected 

in order to normalize for both warm and cool phases of the Pacific Decadal Oscillation, which 

is the dominant mode of inter-decadal variability for climate in the NW U.S. (Cayan 1996). 

The PDO is a 20-30 year oscillation of warm and cool Pacific sea surface temperatures (SST) 

that interact with the El Niño/Southern Oscillation (ENSO) (Gershenov and Cayan 1999). The 

positive (warm) phase of the PDO is characterized by cooler than average SSTs near the Aleutian 

Islands and warmer than average SSTs near the California coast; conditions that favor the 

influence of El Niño. The negative (cool) phase of the PDO enhances La Niña teleconnections 

(i.e., winter wetness in the Pacific Northwest) (Latif and Barnett 1994). The PDO was in the cold 

phase from 1946-1976, and has been in the warm phase since 1976 (Zhang and Battisti 1997). El 

Niño winters in the NW U.S. tend to be warmer and drier during the warm phase, and cooler and 

wetter than average during La Niña winters (Cayan 1995).

Digital Spatial Data

For the maps and spatial analysis, a 7.5 minute (30 meter resolution) digital elevation 

model (DEM) was downloaded from the United State Geological Survey (<http://edc.usgs.gov/ 

geodata>). Bailey’s (1995) Ecoregions digitized coverage, and major river network layers were 

downloaded from the National Biological Information Infrastructure (NBII) website (http://www.
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nbii.gov/index.html). Kuchler’s Potential Vegetation dataset (5 km resolution) was obtained from 

the National Oceanic and Atmospheric Administration’s Geophysical Data Center (http://www.

ngdc.noaa.gov). This spatial dataset (GIS coverage) was digitized by the US Environmental 

Protection Agency from the 1979 Physiographic Regions Map produced by the Bureau of Land 

Management, which added an additional 10 vegetation classes to Kuchler’s USGS Potential 

Natural Vegetation map.

Potential Natural Vegetation (PNV) is the “climax” vegetation that would normally occur 

on a given site without disturbance or climatic change (Kuchler 1964).  This dataset is used as a 

proxy of what general habitat types would have been present before widespread human activities 

transformed the landscape. It is used in this analysis as a reference for information regarding the 

most likely bison habitat. In addition, suitable grazing opportunities are evaluated by comparing 

the historical annual Net Primary Productivity (NPP) of grassland areas east and west of the 

Continental Divide as modeled by the Interior Columbia Basin Ecosystem Management Project 

for a “normal” climate year (ICBEMP 2005). Net Primary Productivity is the total amount of 

biomass produced (including leaves, stems, coarse roots and fine roots) minus the annual total 

respiration (ICBEMP 2005). The dataset is a grid of one kilometer resolution that estimates 

grams of carbon per square meter, and was produced by running a Biogeochemical Simulation 

Model (BGC) for Historical (circa 1900) conditions for each weather year of 1982 (cool and 

wet), 1988 (warm and dry), and 1989 (normal conditions) (Thorton 1998). Because the data 

only extends to the boundaries of the Columbia River basin, NPP for grasslands outside of 

the boundary cannot be estimated (Figure 16). However, the eastern section of the coverage 

does overlap areas of historic bison abundance, so it was determined that this dataset would be 

sufficient for comparison of relative NPP between areas of disparate bison abundance. For this 

analysis, the dataset modeled on 1982 was used, because this year represents average climatic 

conditions across the region (Thorton 1998). Only grid cells that intersect selected grassland 

habitat determined suitable for grazing (based on Kutchler’s Potential Vegetation) will be 

calculated for estimated annual historical NPP.
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Figure 16. Annual Net Primary Production of the Columbia River Basin.

Bison Data

Locations of archaeological sites that have contained Bison remains were obtained from 

FAUNMAP, an experimental electronic database that has been documenting, in a GIS format 

(ArcInfo), the late Quaternary distribution of mammal species in the United States (http://www.

museum.state.il.us/research/faunmap). The data available on FAUNMAP were collected based 

on published reports, including peer-reviewed literature, contract reports, and selected theses 

(Figure 17). The assembled information includes mammal species, taxonomic attributes, site 

names and numbers, lat/long coordinate positions (at least at the county level), relative and 

absolute chronologies, cultural associations, and depositional environments (see Appendix IV). 

For the past four years, data have been captured from paleontological and archaeological sites 

that contain mammalian remains back to 40 ka. The database is set up so that a user may query a 

species of interest, and time frame of interest (e.g., Holocene), and an on-the-fly map is produced 
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with a table of the site characteristics. Bison sites from the Holocene period were queried from 

the database and using the site records produced (in html format) the data was converted to a 

point shapefile, so that the records could be mapped. The creators of FAUNMAP caution that 

because the database is an experimental, dynamic project, results produced from the queries may 

not be entirely representative of the entire database. For the purposes of this investigation, the 

data queried were used only as a reference of locations of likely bison occurrence, rather than 

abundance or non-occurrence, in comparison with literature reports of abundance patterns, as 

there is likely a sampling bias inherent in the archeological record (Daubenmire 1985, Lyman 

and Wolverton 2002 and 2004).

Figure 17. Archaeological sites from the FAUNMAP database with Holocene Bison remains and 
locations of Holocene Bison kill sites from Lyman and Wolverton (2002).
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Snow Water Equivalent

Because SWE integrates the properties of depth and density, I selected it as the primary 

snow variable used in this analysis, although I also consider snow depth. Snow water equivalent 

describes how much water is obtained by melting a volume of solid snow. The volume of water 

produced by solid snow of a known depth varies based on the density, or compactness of the 

snow. The relationship between the three properties of snow can be expressed as:

SWE = depth x density

Snow course and SNOTEL data were used in the analysis of patterns of snow water 

equivalent. Snow data have been collected across the United States for the past 90 years in 

some locations, along what are referred to as “snow courses”, and more recently by automated 

SNOTEL (Snowpack Telemetry) stations, operated by the U.S. Department of Agriculture 

Natural Resources Conservation Service (NRCS). A snow course is a transect of 5 to 50 sample 

points, along which snow water, density, and depth are measured manually, at some locations 

once a month January through May, but most frequently measurements have been taken the 

beginning of April. In the late 1970s, many of these snow courses were enhanced or replaced 

by SNOTEL stations, due to a demand for an automated system that would provide more 

frequent snow measurements in inaccessible locations. The typical SNOTEL sensor includes 

snow pillows, a storage precipitation gauge, and a temperature sensor (Figure 18) (NRCS, 

“Snow Surveys and Water Supply Forecasting” 2004. <http://www.wcc.nrcs.usda.gov/factpub/ 

sect_4b.html>). Snow pillows are panels of stainless steel or synthetic rubber, about 4x5 feet, 

filled with an antifreeze solution. The weight of snow as it accumulates on the pillows, forces 

the fluid to a pressure sensing electronic device that converts the pressure reading to snow water 

equivalent, which is then transmitted by radio signal via meteor burst to the National Water and 

Climate Center (NWCC) central computer system in Portland, Oregon (NRCS, “Snow Surveys 

and Water Supply Forecasting” 2004. <http://www.wcc.nrcs.usda.gov/factpub/ sect_4b.html>).
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Figure 18. Example of a typical SNOTEL station. From NRCS “Snow Surveys- SNOTEL” 2004. 
(http://www.wcc.nrcs.usda.gov/factpub/sect_4b.html).

When a manual snow course is discontinued, usually there is a sufficient period (about 10 

years) of overlap with SNOTEL to evaluate the consistency of the two measurements; the SNOTEL 

stations at these sites have integrated real-time and historic data, and in general there is strong 

agreement between the manual snow course and automated SNOTEL values (Serreze et al. 1999).

SWE data were downloaded in text format from the Natural Resource Conservation 

Service National Water and Climate Center website for all snow course and SNOTEL sites in 

Oregon, Washington, Montana, and Idaho (NRCS, “National Water and Climate Center” 2004 

(<http://www.wcc.nrcs.usda.gov>) (Figure 19). Two hundred and ten stations were selected 

based on the longest records between 1940 and 2002 with no more than 20% missing data. 

April SWE was selected from the dataset, because snow course measurements are taken most 

frequently at the beginning of April, and also because April represents the typical cumulative 

peak of snowfall in this region (Regonda et al. 2003). Most stations used were at or below 2500 

meters in elevation- east of Rocky Mountains, stations range from between 1400-2500 meters, 
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and west of Rocky Mountains, stations range from 600 meters to 2600 meters (see Appendix I 

for station inventory).

Figure 19. Distribution of SNOTEL or snow course sites.

NCDC NWS and Cooperative Stations Data

Monthly summary total precipitation and snowfall data were obtained from the National 

Weather Service (NWS) and cooperative U.S. station network (TD3220), which is archived at 

the National Climatic Data Center (NCDC) (<http://www.ncdc.noaa.gov>). The period of record 

available is from the late 1930s-1950s to present for most stations. The data are quality checked 

by both automated and manual methods before distribution. Because of the relatively high spatial 

density of the NWS network (compared to the SNOTEL network), 254 stations were selected 

for precipitation data that had the longest records and the least amount of missing data (Figure 

20). The highest percent of missing data for a station was 13% (see Appendices II and III), and 

the months with no data appear randomly. Sixty-two percent of the 254 stations have data that 
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extend to the late 1930s, thirty-two percent of the stations have data to 1950, and six percent 

have data that extend to the 1960s (these were retained to provide coverage for remote areas).

Figure 20. Distribution of NWS/Cooperative stations selected for analysis.

Palmer Drought Severity Index Data

To validate the veracity of calculated drought frequency from the NWS/Cooperative 

network, data from the “North American Drought Variability PDSI Reconstructions” by Cook et 

al. (2004) were used. The Palmer Drought Severity Index (PDSI) is an imperfect, but commonly 

used meteorological indicator of wet and dry periods-or departures from normal- based on 

temperature, precipitation, and soil type (Palmer 1965). PDSI indices are typically expressed on 

a scale between -6 and +6 (but can extend beyond); negative PDSI values indicate dry conditions 

and positive values indicate wet conditions. The dataset is a 2.5-degree grid covering the 

Continental United States based on a network of 835 tree ring reconstructions of annual Palmer 
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Drought Severity Index (PDSI). The gridded PDSI was constructed with instrumental data for 

the past 100 years and the tree ring reconstructions as proxy data for the past several centuries 

and millennia. The temporal coverage of the data set extends 2000 years for some locations. Data 

from seventeen grid points across the NW U.S. were selected with reconstructed PDSI values 

from the years 1500-2000 (Figure 21). The number of tree-ring chronologies used to reconstruct 

the data increases progressively higher in the time period, from no less than 10 trees in the early 

1500s to 80 trees in the last century. The time period from 1500- 2000 was selected to maximize 

the accuracy of the reconstruction, as the calibration between the proxy data and instrumental 

data typically weaken back in time at each grid point, due to an increasingly smaller sample of 

chronologies further back in time (i.e., 500 year old trees are rarer than 200 year old trees) (Cook 

et al. 2004).

Figure 21. Grid of reconstructed PDSI network based on Cook et al. (2004).
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Study Methodology

Snow Water Equivalent

Snow water equivalent data from 210 stations (see Appendix I) during the period from 

1938 to 2000 were first analyzed by Principal Components Analysis (PCA) to explore and contrast 

regions of snow water content. Specifically, the objective was to discern any significant differences 

between mean SWE values. Because the SNOTEL stations are not evenly distributed across the 

NW U.S., an accurate regionalization of SWE is not possible. Most SNOTEL stations are situated 

above 1000 meters, because the original purpose of this network was to provide snowpack and 

climate data for high elevations for predicting spring melt runoff and streamflows. Consequently, 

unlike the NWS cooperative network, SNOTEL stations do not reflect low elevations basins such 

as middle Columbia Basin in Washington, and much of the Snake River Basin in southern Idaho. 

Thus, spatial gaps in the analysis (e.g., central Washington and southern Idaho) exist, but the 

purpose of this analysis is not to delineate climate regions based on snow, but rather, to explore, 

compare, and contrast areas within the study area that have similar snow characteristics.

PCA is a multivariate analysis process that can reduce multiple variables into a fewer 

number of uncorrelated variables by axes (line through a cluster of points) rotations. The purpose 

for this process can be either exploratory or predictive. I used PCA as an exploratory method to 

reveal patterns through data reduction. The “principal components” are the derivative variables 

that summarize the original variables by successive multiple regressions through a correlation or 

covariance matrix. Each component explains a successively smaller amount in variation of the 

dataset than the previous component, which is quantified by the eigenvalue of the component. To 

discern where each variable falls on the component axis, the component loadings matrix is used 

to find the correlation between the components and original variables (Rogerson 2001).

For SWE, a covariance matrix was selected since the units of measurement were the 

same for all the variables (April SWE). The component matrix was rotated using the Varimax 

rotation, and orthogonal method used to ensure that the explained variance is more evenly 

distributed across the components, which makes interpretation of component loadings easier 
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(Frei and Robinson 1999). To assess whether the components were significantly different, a 

one-way analysis of variance was used on the SWE values for each assigned component. SWE 

components were chosen using the criteria of selecting components with eigenvalues greater than 

one, and after examining the scree plot. To assess whether the components were significantly 

different, a one-way analysis of variance was used on the April SWE values for each assigned 

component. A Tukey HSD test was then performed to determine which components were 

significantly different from each other. The station variables were assigned a component based 

on the rotated loadings matrix. The factor loading correlation coefficients were examined to 

determine which component each variable loaded most highly on. The variables were assigned 

the highest loaded component if the correlation coefficient was greater than 0.4. Station variables 

that did not load higher than 0.4 on any component or that loaded equally on more than one 

component were not assigned components. To determine whether relative SWE values could be 

compared across the region and is not entirely dependant on elevation, the relationship between 

SWE and elevation was tested using a simple regression equation between average April SWE 

and elevation of all stations (see Appendix I for station elevations).

Drought Frequency

Inter- and intra-annual drought frequency across the study area was assessed using 254 stations 

from the NWS cooperative network data (see Appendix II). To calculate intra-annual drought frequency 

(the frequency of monthly departures for each station), the monthly sample average was calculated for 

each station, and then examined for monthly departures less than eighty percent of this average. The 

percentage of departures for each month for each station was then calculated as a sum of the number of 

Junes, for example, with recorded precipitation in the 20th percentile or below, divided by the number 

of recorded years. The percentage of inter-annual drought (between stations) was calculated as a sum 

of all months that recorded less than 80% of normal divided by the total number of recorded months. 

Differences between intra-annual and inter-annual drought frequencies on either side of the CD were 

evaluated by two-sided studentized t-tests (assuming unequal variances), α = 0.05.
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Bison populations are likely more vulnerable to periods of sustained summertime drought, 

which can increase the potential for bison mortality the following winter, because low summer 

rainfall can reduce forage quality and quantity available to grazers during the subsequent winter 

(Merrill and Boyce 1991, Frank and McNaughton 1992). Overall, annual grassland productivity in 

the NW U.S is more dependent on springtime precipitation; however, the variability of grassland 

productivity in this region is more sensitive to precipitation variability in the summer, when 

water availability is at its most limited (Xiao and Moody 2004). Summertime precipitation can be 

used as a relative index of winter forage available to bison on winter ranges (Farnes et al. 1999) 

Accordingly, in addition to single season drought frequency, sustained summertime (June through 

August) drought frequency was examined. For this part of the analysis, 164 stations were selected 

based on proximity to grassland as a representation of potential bison habitat. Stations located 

within 50 km of potential grassland-steppe habitat, defined by Kuchler’s Potential Vegetation 

dataset, were selected with data back to 1950 (Figure 22).

Figure 22. NWS/Cooperative stations selected to analyze 
sustained drought frequency from 1950-2000.
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For each selected station, June through August (JA) precipitation was averaged. Next, 

the station chronologies were examined for successive JA precipitation values less than 80% 

of the average, and the frequency of such multiple-year events were summarized by station. 

For example, if station A experienced less than 80% of average rainfall in years 1951, 1952, 

1984, and 1985, then station A has a sustained summer drought frequency of two events. To be 

parsimonious, and not overestimate the frequency of successive odd numbered summer droughts, 

a sustained drought for three (five) years was noted as one (two) event/s. In addition, to verify 

that the last fifty years of recorded data accurately represents the spatial extent of variability 

for the past several centuries, the frequency of reconstructed annual PDSI values less than -2 

(moderate drought) was calculated for the study area back to 1500 B.P.

Climate Severity Index

Development of a standardized index that reflects both snow water equivalent and 

drought frequency was the final step of the analysis. Sites for the development of the climatic 

stress index (CSI) were selected that met the criteria in the following order (with decreasing 

importance): stations with the least amount of missing data, the longest records, and that were 

within 50 km of grassland-steppe habitat. This excluded much of eastern Washington, and 

southern Idaho. Historically, bison have occupied more arid areas as far south as Mexico (Lott 

2002), but of specific interest were areas of sharp contrast between bison occurrence and lack 

thereof, such as western Montana east and west of the Continental Divide and northeast Oregon/

west Idaho near the confluence of the Snake and Columbia Rivers.

A 50km grid was created across the study area and the inter-annual June-August drought 

frequency of stations (both single year and sustained) within each cell was assigned. If more 

than one station fell inside a cell, then the average frequency was assigned. Next SWE sites that 

fell within a cell with NWS stations were selected as sites to develop the CSI. The purpose of 

developing the index on the SWE sites is that there are a higher number of NWS stations than 

SWE sites. The first step to calculate the CSI index was multiplying 70% of average SWE by 
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30% of the inter-annual drought frequency value of the cell it fell within. These proportions 

were selected based on previous recommendations by wildlife managers (Farnes 1999), and also 

because snow conditions are the most important factor that determine bison survival through 

the winter (Meagher 1976, Turner et al. 1994). The calculated values were then standardized 

as z-score indices (a measure of the distance in standard deviations from the mean) to compare 

the composite climate conditions most likely to affect bison between locations of known low 

and high bison abundance. Differences between z-scores of sites on either side of the CD were 

evaluated by two-sided studentized t-tests (assuming unequal variances), α = 0.05.
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CHAPTER 3: RESULTS

Snow Depth

Differences in average April snow depth between locations on either side of the 

Continental Divide are well expressed within the study area (Figure 23). Snow depths are 

between two to ten times greater east of the CD than locations west of the CD. This disparity 

likely reflects the differences between the influences of available moisture and temperatures on 

the east side of the CD where a colder, drier, continental climate regime dominates, compared to 

the locations west of the CD, where moister, Pacific air dominates (Ferguson 1999) . Therefore, 

snow east of the Rocky Mountains tends to be powdery or less dense than snow west of the 

Rocky Mountains.

Figure 23. Map of April average snow depth from NWS/Cooperative 
stations for approximately the past 50 years.
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Snow Water Equivalent

Six SWE components were selected that explain 76% of the variance within the dataset 

(Table 1). The ANOVA test revealed that aggregate difference exist among the group means 

(significant F ratio, p <0.01). A Tukey HSD test of significance indicated that components 5 and 

6 were not significantly different from component 4, so the numbers of components retained 

were reduced to four (Figure 24).

Table 1. Component eigenvalues and the percent of dataset variance each component explains on 
both the rotated and unrotated matrices.

Initial Eigenvalues Rotation Sums of Squared Loadings

Component Total % of Variance Cumulative % Total % of Variance Cumulative %

1 110.9 52.3 52.3 50.0 23.6 23.6
2 19.6 9.3 61.6 35.9 16.9 40.5
3 12.9 6.1 67.7 23.7 11.2 51.7
4 8.7 4.1 71.8 21.2 10.0 61.7
5 8.3 3.9 75.7 19.6 9.2 70.9
6 5.3 2.5 78.2 12.1 5.7 76.6

The regression test results between SWE and elevation indicate a low correlation  

(r = 0.002, p<0.01) between the two variables (Figure 25). This indicates that the relationship 

between SWE and elevation is not consistent across the NW U.S. region. The relationship is 

probably more significant across smaller areas on either side of the CD, but these results indicate 

that the regional distribution of SWE is controlled by factors other than elevation.
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Figure 24. April SWE components.
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Figure 25. Scatterplot between elevation (meters) and average April SWE.
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The differences of average SWE between the components is displayed in Table 2. 

Average April SWE values are highest for components CNR and SRM with average April SWE 

values of 31 (CNR) and 22 (SRM) inches. SWE is lowest for SEO, with an average of 9 inches 

of April SWE, and slightly higher for NOSM, where April SWE averages are 13 inches. Figure 

26 displays the average April SWE for the individual stations and elevation ranges.

Table 2. Average April SWE comparison between components.
Component Name Station count Avg Apr SWE (inches)

1 Cascades/Northern Rockies (CNR) 74 31
2 Salmon River Mountains (SRM) 49 22
3 SE Oregon (SEO) 23 9
4 NE Oregon/SW Montana (NOSM) 19 13

No component 45 *

Figure 26. Average April SWE (inches) and elevation (meters).
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Intra-Annual Drought Frequency

The results of analysis of intra-annual (seasonal) drought frequency less than 80% of 

normal of the NW U.S. for the past 50 years indicate that July through September drought 

frequencies are the highest across central Washington and Oregon, and southwest Idaho (Figure 

27). On average, these areas likely experience drought conditions during the summer once every 

two years. Across the NW U.S., summertime is the season when differences in seasonal drought 

frequency are most evident. Difference of means testing affirmed that between locations east and 

west of the Continental Divide, summer droughts were overall significantly more frequent west 

of the Divide than any other time of year (p<0.01).

Figure 27. Intra-annual frequency of drought for 254 NWS/Cooperative stations across the NW 
U.S. for the past ~50 years: Dark blue-Low (7 year or >)*, Light blue-Medium Low (5-7 year), 

Green-Medium (4-5 year), Orange-Medium high (3-4 year), Red-High (2 year).
* Approximate return interval
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Inter-Annual Drought Frequency

Difference of means testing between inter-annual (between years) summer drought 

frequency of stations east and west of the Divide resulted in significant differences (p<0.01). In 

general, most locations west of the Divide experience summer drought conditions once every two 

to three years, whereas most locations east of the Divide experience summer drought conditions 

from three to seven years (Figure 28). Within the region however, there is a similarity of summer 

single-year drought frequency between locations of bison occurrence: south and north Montana 

(east of the Rockies) and lack of bison occurrence: northeast Oregon/east central Idaho. Summer 

drought occurs on average once every three to four years in these areas. However, locations 

flanking the Columbia River - further south from central Oregon to southern Idaho and in central 

Washington – the frequency of summer droughts increase to once every two to three years. These 

locations have the lowest reported bison occurrence across the Northwest United States. Summer 

drought frequency is lowest (>4 years) east of the Divide and west of the Missouri River where 

bison occurrence is comparably low in Montana.

A similar pattern emerges when examining the results of sustained summer drought 

frequencies in areas of grassland/steppe (Figure 29). The number of summer droughts that 

persist for two years or longer can be up to three times higher (~ once every 6.5 years) for central 

Oregon and Washington than Montana (~ once every 25 to 50 years). The highest sustained 

drought frequencies for the last fifty years have occurred in central Washington and Oregon. The 

lowest frequency of summer drought in Montana occurs in areas of high bison occurrence.
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Figure 28. Frequency of June-August precipitation less than 80% of normal 
of last ~50 years. High- 2 year*, Medium high- 3 year, Medium- 4 year, 

Medium low-5-6 year, Low- 7 year and greater. *Approximate return interval

Figure 29. Number of sustained summer drought (>2 years) in grassland/
steppe regions for the past 50 years.
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PDSI values reconstructed back to 1500 B.P. for the NW U.S. were examined to see 

how well the last fifty years represent the spatial extent of variability across the NW U.S. The 

annual frequency of reconstructed PDSI values less than -2 (moderate drought) is plotted in 

Figure 30, and supports the finding that drought frequency in general is higher west of the Rocky 

Mountains.

Figure 30. Frequency of annual PDSI less than –2 since 1500.
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Net Primary Productivity

According to the modeled NPP dataset, average annual historical NPP for grassland areas 

west of the CD within the Columbia Basin were calculated as 372 g/km2, and NPP for grasslands 

east were calculated to be 376 g/km2 (Figure 31).

Figure 31. Modeled annual net primary production (NPP) of grassland areas 
of the Columbia Basin region for 1982, a year of “normal” climate conditions.

Climatic Stress Index

The climatic stress index (CSI) of selected grid sites combining SWE and June-August 

single-year drought frequency revealed no significant differences (p>0.01) across the study 

area when comparing locations east and west of the CD (Figure 32). CSI indices are slightly 

higher (worst conditions) in the northern Rocky Mountains region, west of the Divide, and the 

lower (best conditions) in most locations in Montana east of the Divide (with the exception of 

southwest Montana- near Yellowstone National Park), and most locations in Oregon, excluding 

northeast Oregon.
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Figure 32. CSI severity for single-year June-August drought frequency and average April SWE 
1950-2000. Z-scores: High - 0.68 to 3.33, Medium - -0.32 to 0.067, Low - -1.26 to -0.33.

The calculated CSIs for sustained droughts revealed a dramatic difference in pattern 

(Figure 33). Most significantly, locations in Oregon with relatively low CSIs calculated using 

single-drought frequencies, show higher CSIs calculated using sustained drought frequencies 

(Table 3). The highest indices shift from the northern Rockies to southern Oregon/south eastern 

Idaho. With the exception of the north westernmost Montana (the Flathead Valley) in the Rocky 

Mountains, the indices for combined SWE and sustained droughts are lower in western Montana. 

The disparity between sites across the Divide in Montana is no longer significant, but regionally, 

the CSI indices calculated for sustained summer droughts are significantly higher for locations 

west of the CD compared to sites east of the CD (p<0.01).
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Figure 33. CSI severity for sustained June-August drought frequency and average April SWE 
1950-2000 Z-scores: High - 0.91 to 3.32, Medium - -0.17 – 0.90. Low- -0.81 to 0.18.
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Table 3. CSI Indices calculated for selected sites on average April SWE and single-year summer 
(June through August) drought frequency and average April SWE and sustained (>1 year) 
summer drought frequency.

East 
or 

West 
of 

Divide

ST Station Name Lat Long Elev 
(m)

Frequency 
of Single 
Year J-A 
Drought 
Events 

Frequency 
of Sust J-A 

Drought 
Events

Average 
April 
SWE

Sustained 
CSI

Single 
Year CSI Difference

E MT CAMP SENIA 45.17 -109.47 2405 0 3 6.53 -0.36 -1.07 0.71
E MT CRYSTAL LAKE PILLOW 46.78 -109.50 1844 4 1 12.11 -0.65 -0.22 -0.43
E MT ELK HORN SPRINGS 45.47 -113.10 2377 0 2 9.56 -0.29 -0.66 0.37
E MT FIVE BULL 47.45 -112.82 1737 0 1 6.20 -0.64 -0.88 0.24
E MT GOAT MOUNTAIN 47.65 -112.92 2134 0 2 10.48 -0.38 -0.83 0.45
E MT GOLD STONE 45.15 -113.53 2469 0 1 17.30 -0.34 -0.53 0.19
E MT INDEPENDENCE 45.22 -110.25 2393 0 0 17.83 -0.81 2.26 -3.07
E MT KINGS HILL 46.85 -110.70 2286 13 0 13.78 -0.81 -0.07 -0.74
E MT NEVEDA CREEK PILLOW 46.83 -112.52 1975 0 0 13.63 -0.81 1.42 -2.23
E MT NEW WORLD 45.57 -110.92 2103 17 0 14.81 -0.81 0.51 -1.32
E MT PIPESTONE PASS 45.85 -112.45 2195 1 0 6.09 -0.81 -0.35 -0.46
E MT PORCUPINE PILLOW 46.12 -110.47 1981 0 1 7.00 -0.62 -0.44 -0.18
E MT ROCKY BOY 48.18 -109.65 1433 0 1 4.25 -0.69 -1.01 0.32
E MT TEN MILE UPPER 46.42 -112.28 2438 18 0 14.30 -0.81 0.45 -1.26
E MT TWENTY-ONE MILE 44.90 -111.05 2179 0 1 17.41 -0.33 -0.33 0.00
W OR ANEROID LAKE #2 SNOTEL 45.22 -117.20 2225 0 1 26.23 -0.09 0.16 -0.25
W MT BARKER LAKE PILLOW 46.10 -113.13 2515 22 0 15.47 -0.81 3.33 -4.14
W WA BEAVER PASS 48.88 -121.25 1122 12 3 31.69 1.81 0.46 1.35
W ID BENTON SPRING 48.35 -116.77 1500 0 1 19.72 -0.54 -0.42 -0.12
W MT BIG CREEK 47.68 -113.95 2057 27 3 43.95 2.82 1.14 1.68
W ID BIG CREEK SUMMIT S 44.63 -115.80 2006 35 1 34.70 0.14 0.24 -0.10
W ID BIG SPRINGS 44.48 -111.27 1951 1 1 20.50 -0.25 -0.16 -0.09
W ID BOGUS BASIN 43.77 -116.10 1932 9 2 25.03 0.57 -0.18 0.75
W ID BOSTETTER R.S. S 42.17 -114.18 2286 7 3 20.70 0.90 -0.38 1.28
W OR BOURNE PILLOW 44.82 -118.20 1768 0 2 18.78 0.22 -0.25 0.47
W WA BOYER MOUNTAIN 48.20 -117.43 1600 0 0 25.80 -0.81 1.28 -2.09
W ID BRUNDAGE RESERVOIR S 45.05 -116.13 1920 27 0 31.14 -0.81 1.12 -1.93
W OR CHEMULT ALT 43.22 -121.80 1451 20 4 8.77 0.03 -0.90 0.93
W MT COYOTE HILL 47.33 -113.58 1280 2 1 9.47 -0.55 -0.66 0.11
W MT DESERT MTN 48.42 -113.95 1707 0 2 15.45 0.04 1.10 -1.06
W OR DOOLEY MTN 44.50 -117.83 1655 2 2 8.47 -0.35 -0.73 0.38
W OR FISH CREEK SNOTEL 42.70 -118.63 2408 26 5 30.02 3.32 -0.63 3.95
W MT GIBBONS PASS 45.70 -113.95 2164 0 1 23.02 -0.18 1.25 -1.43
W MT GOLD CREEK LAKE 46.45 -113.07 2195 0 0 15.31 -0.81 1.42 -2.23
W OR HART MTN AM 42.48 -119.70 1935 0 7 1.64 -0.50 -1.22 0.72
W MT HELL ROARING DIVIDE 48.50 -114.35 1759 3 2 30.47 0.87 1.07 -0.20
W OR LAKE CREEK SNOTEL 44.18 -118.60 1585 5 4 11.28 0.43 -0.79 1.22
W OR LUCKY STRIKE SNOTEL 45.28 -118.85 1539 5 4 11.27 0.43 -0.92 1.35
W OR MARKS CREEK 44.48 -120.40 1384 0 3 1.61 -0.68 -1.22 0.54
W ID MOORES CREEK SUMMIT SNOTEL 43.92 -115.67 1859 36 4 35.64 3.12 0.28 2.84
W WA MUTTON CREEK NO 2 48.70 -119.87 1829 23 2 14.44 -0.02 -0.65 0.63
W MT NORTH FORK JOCKO PILLOW 47.27 -113.77 1929 31 0 45.81 -0.81 1.75 -2.56
W OR OCHOCO MEADOWS SNOTEL 44.43 -120.33 1585 0 6 9.09 0.69 -1.09 1.78
W ID PLACER CREEK 44.82 -116.70 1786 0 3 18.80 0.48 -0.46 0.94
W OR QUARTZ MTN 42.27 -120.78 1622 3 7 3.72 -0.09 -1.17 1.08
W ID SAVAGE PASS SNOTEL 46.47 -114.63 1881 0 2 27.48 0.70 -0.08 0.78
W OR SCHNEIDER MEADOWS 45.00 -117.15 1646 26 1 31.56 0.06 0.10 -0.04
W MT SLIDE ROCK MTN 46.58 -113.57 2164 0 1 16.13 -0.37 0.67 -1.04
W ID SMITH CREEK 48.87 -116.75 1463 30 1 45.48 -0.19 2.23 -2.42
W OR STARR RIDGE REV 44.27 -119.02 1570 0 5 3.97 -0.27 -1.12 0.85
W OR STINKING WATER 43.70 -118.53 1463 0 4 0.80 -0.72 -1.26 0.54
W MT STORM LAKE 46.08 -113.27 2371 12 0 14.17 -0.81 0.43 -1.24
W OR STRAWBERRY SNOTEL 42.10 -121.85 1756 9 4 5.50 -0.28 -1.05 0.77
W OR SUMMER RIM SNOTEL 42.70 -120.82 2164 3 6 19.66 2.44 -0.86 3.30
W OR TIPTON SNOTEL 44.67 -118.37 1570 23 2 15.28 0.03 -0.62 0.65



50

CHAPTER 4: DISCUSSION

While snow depths tend to be higher east of the Rocky Mountains, snow water equivalent 

values are, in general, higher west of the CD, and most significantly west of the CD in Montana. 

The most significant landscape feature that contributes to the distribution of SWE is the Rocky 

Mountains, which intercept moisture from the Pacific. In addition, high SWE values are related 

to both temperature and precipitation maximums (Serreze et al. 1999). Mean winter temperatures 

are higher overall west of the Rockies due to the moderating influence of marine air masses, 

which leads to higher water content in snow (Serreze et al. 1999). The seasonal precipitation 

maximum in the study area grades from November through December in most of Washington 

and western/central Oregon, to January through February in northeast Oregon, some locations 

in Idaho and western Montana, to May through June in western Idaho and central to eastern 

Montana (Mock 1996). For the region west of the CD, relatively warm and moist air from the 

Pacific dominates in the wintertime, which is best represented by April SWE (Cayan et al. 1999).

The results of SWE analysis demonstrated that in general, the Cascades and Northern Idaho/

northwestern Montana have the highest SWE (>30 inches). These regions overall have the highest 

elevations and are most likely to intercept moisture from the Pacific. These regions also have low 

historical bison populations. With increasing distance from the source of moisture, but high windward 

locations, the region from the Wallowa Mountains in northeastern Oregon to the Salmon Mountains in 

western Idaho have fairly high SWE values (20--25 inches). From central to southwest Oregon SWE 

values are the lowest (<10 inches), most likely due to the rainshadow effects of the Cascades. What is 

most interesting is the similarity in SWE values between the regions of central to northeastern Oregon 

and southwestern Montana. This component averages between 10 and 20 inches of April SWE. The 

reason for this is likely due to relatively high elevations (higher than SW Oregon, but lower than the 

Cascades and Northern Rockies), but in leeward locations.



51

Because SWE is highest west of the CD in western Montana and northern Idaho 

(excluding the Cascades Range), winter range conditions are likely the most severe in the valleys 

of this region, precluding bison populations from large abundance as their counterparts east of 

the Divide. Based on SWE values alone, and because SWE values between southwest Montana 

(relatively high historical bison abundance) and northeastern-central Oregon (lower historical 

bison abundance) are comparable, it would seem that - given all other conditions are equal - 

winter range conditions in the grassland/steppe of Oregon should be suitable for bison success.

At the regional scale, the cause of greater drought frequency west of the CD is most 

likely affected by a combination of topography and synoptic processes such as the high pressure 

over the Pacific and the PDO (Knapp et al. 2004). During the summer, precipitation is at a 

minimum west of the CD due to the blocking action of a high pressure system over the Pacific, 

which steers moisture to the north (Serreze et al. 1999, Knapp et al. 2004). In the autumn, the 

high pressure system begins to weaken, allowing marine air masses to penetrate the region. 

Knapp et al. (2004) found that sustained droughts are more common during the warm phase 

of the PDO, which is likely a greater synoptic control on precipitation variability during the 

summer west of the CD. Drought frequency east of the CD has been shown to be controlled 

by the transport of moisture from the Gulf of Mexico in the summertime, which is influenced 

by decadal-scale fluctuations in the North Atlantic sea surface temperatures (the North Atlantic 

Oscillation) and ENSO (Enfield et al. 2001, Woodhouse et al. 2002).

A comparison of inter- and intra-annual drought frequencies across the study area reveals 

that the most significant difference in drought frequency between locations east and west of the 

CD occurs in the summertime. Single-year droughts are a dominant climatic feature of western 

Montana, compared to multiple-year persistent drought across the region west of the Divide. 

Both variables were used to develop the CSI. Studies have shown that summertime drought 

conditions preceding a winter of heavy snowfall are particularly deleterious to bison populations 

(Frank and McNaughton 1992, Woodhouse et al. 2002). The combination of SWE and drought 

frequency variables provides a more complete analysis of how climate in the region may have 
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affected historical bison success. The results presented here indicate a relationship between 

areas of low historic bison occurrence and severe climate conditions. CSI values for single-year 

drought frequencies are slightly higher in northwestern Montana just west of the CD, and more 

significantly, CSI for sustained drought frequencies are the highest in central Washington and 

Oregon, all locations of low bison occurrence. Thus, the combined effects of high SWE and 

greater drought frequency create a two-dimensional form of climatic stress that may preclude 

bison from residing in certain areas.

The spatial patterning of the CSI data suggest that the abundance of bison may be 

significantly influenced by the inter-annual reliability of forage as opposed to long-term averages 

of plant productivity that would suggest otherwise. Thus, in areas where SWE is low and 

summer droughts the least frequent, such as the eastern Rocky Mountain foothills of Montana, 

a reliable source of forage supported abundant bison herds. Conversely, greater SWE and more 

frequent droughts have historically posed challenges for bison to obtain forage during the winter 

and summer, respectively, and may have limited herd populations in western Idaho, eastern 

Oregon, and eastern Washington.

Conclusion

Using monthly average data collected at SNOTEL/snow course and NWS/Cooperative 

weather stations for the past several decades, average April SWE and summertime drought 

frequency were analyzed at sites across the northwest United States. An index of climate severity 

was developed by combining average SWE and drought frequency for sites within 50 km of 

grassland/steppe, as these are the climate factors that will most likely affect bison success. The 

results of the climate severity index (CSI) revealed that in general, locations west of the continental 

divide experience heavier snowfall and a greater frequency of sustained droughts, thus presenting a 

“double whammy” of climate conditions that bison populations would have to endure. The locations 

of highest combined snow and drought frequencies coincide with locations of low bison occurrence.



53

It is likely that climate conditions in concert with other factors have affected bison 

success across the Northwest United States, but it is also likely that CSI is critically important. 

In addition to this and other theories offered, consideration of migration filters and barriers in the 

northwest United States deserves more attention. Van Vuren (1987) suggests that the complex 

topography of mountains and canyons west of the continental divide is an impediment to open 

migration. It is also possible that rivers may be an important migration filter. Because of a lack 

of snow stations in northern Oregon and southern Washington along the Columbia River, it 

is not feasible to evaluate winter severity conditions in this area. But compared to locations 

further south in Oregon, this area has relatively low drought frequency, which is probably due 

to more frequent incursions of marine air through the Columbia Gorge, which would moderate 

the frequency of drought (Ferguson, 1999). The Columbia and Snake rivers essentially isolate 

Oregon from the rest of the region, so although bison can swim, and can cross rivers (Figure 34), 

migration across these rivers would only be possible along narrow stretches, during periods of 

low flow, or when the rivers freeze.

Figure 34. Bison crossing Yellowstone River. NPS Photo by Jim Peaco, September 2001.
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While Bison have occurred west of the Rockies throughout the Holocene, the consensus 

is that they were never as abundant as east of the continental divide (Mack and Thompson 1982, 

Daubenmire 1985, Van Vuren 1987, Flores 1991, Garret 2001, Martin and Szuter 1999 and 

2002, Lyman and Wolverton 2002, Moore 2002). These previous studies have examined human 

predation, carrying capacity of the landscape, forage quality, and snow depth. The results of this 

study of climate severity and bison distribution enhances previous work by providing evidence 

that there are significant differences between snow and drought conditions of the northwest 

United States, that coincide with areas with historically low bison occurrence. In addition, it 

illustrates that the role of climatic variability over what are otherwise considered to be defined 

ecoregions may be more important than previously identified for bison. This consideration 

of multi-dimensional climate variability as a factor of bison ecology from a geographical 

perspective should compel further research of mammalian biogeography with enhanced regard to 

the geographic and temporal scales of climate.
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APPENDIX I

SNOTEL Station Inventory

State Station ID Station Type Station Name Elev (meters) Lat (North) Long (West)
ID 11E20S Snotel Island Park Snotel 1917 44.42 -111.38
ID 11E37S Snotel Crab Creek Snotel 2091 44.43 -112.00
ID 11G01S Snotel Somsen Ranch Snotel 2073 42.95 -111.37
ID 11G05S Snotel Slug Creek Divide Snotel 2202 42.57 -111.30
ID 11G06S Snotel Emigrant Summit Snotel 2252 42.37 -111.57
ID 11G30S Snotel Sedgewick Peak Snotel 2393 42.53 -111.97
ID 11G32S Snotel Franklin Basin Snotel 2490 42.05 -111.60
ID 13D16S Snotel Moose Creek Snotel 1890 45.00 -113.95
ID 14C04S Snotel Savage Pass Snotel 1881 46.47 -114.63
ID 14E01S Snotel Mill Creek Summit Snotel 2682 44.47 -114.47
ID 14F02S Snotel Stickney Mill Snotel 2265 43.87 -114.22
ID 14F11S Snotel Soldier Rs Snotel 1750 43.48 -114.82
ID 14F19S Snotel Chocolate Gulch Snotel 1963 43.77 -114.42
ID 14G01S Snotel Bostetter R.S. Snotel 2286 42.17 -114.18
ID 14G02S Snotel Magic Mountain Snotel 2097 42.18 -114.30
ID 15C04S Snotel Shanghai Summit Snotel 1393 46.57 -115.75
ID 15E02S Snotel Big Creek Summit Snotel 2006 44.63 -115.80
ID 15E04S Snotel Deadwood Summit Snotel 2091 44.55 -115.57
ID 15F01S Snotel Moores Creek Summit Snotel 1859 43.92 -115.67
ID 15F04S Snotel Atlanta Summit S 2310 43.75 -115.23
ID 15F05S Snotel Trinity Mtn Snotel 2368 43.63 -115.43
ID 16A04S Snotel Mosquito Ridge Snotel 1585 48.05 -116.23
ID 16D08S Snotel West Branch Snotel 1695 45.07 -116.43
ID 16D09S Snotel Brundage Reservoir Snotel 1920 45.05 -116.13
ID 16G01S Snotel South Mtn Snotel 1981 42.77 -116.90
ID 11E022 Snow course Kilgore 1926 44.40 -111.90
ID 11E08 Snow course Valley View 2036 44.63 -111.32
ID 11E09 Snow course Big Springs 1951 44.48 -111.27
ID 11E11 Snow course Blue Ledge Mine 2103 44.43 -112.00
ID 11F01 Snow course State Line 2030 43.55 -111.05
ID 11GO3 Snow course Austin Bros Ranch 1951 42.78 -111.43
ID 12E03 Snow course Camp Creek 2006 44.45 -112.23
ID 12G08 Snow course Sublett 1814 42.38 -112.97
ID 13F02 Snow course Copper Basin 2329 43.82 -113.92
ID 14D03 Snow course Kit Carson Pasture 1509 45.70 -114.62
ID 14F05 Snow course Graham Ranch 1911 43.78 -114.42
ID 14F07 Snow course Mascot Mine 2371 43.70 -114.10
ID 15B03 Snow course Fourty-Nine Meadows 1472 47.10 -115.88
ID 15D02 Snow course Squaw Meadow 1798 45.15 -116.00
ID 15E011 Snow course Lake Fork 1612 44.92 -115.95
ID 15E03 Snow course Crawford 1481 44.53 -115.98
ID 16A01 Snow course Smith Creek 1463 48.87 -116.75
ID 16A02 Snow course Benton Meadow 722 48.35 -116.83
ID 16A03 Snow course Benton Spring 1500 48.35 -116.77
ID 16B01 Snow course Lower Sands Creek 951 47.73 -116.48
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ID 16B02 Snow course Copper Ridge D 1469 47.72 -116.50
ID 16D01 Snow course Boulder Creek 1658 45.07 -116.45
ID 16E02 Snow course Placer Creek 1786 44.82 -116.70
ID 16F02 Snow course Bogus Basin 1932 43.77 -116.10
MT 09C01S Snotel Crystal Lake Pillow 1844 46.78 -109.50
MT 10C03S Snotel Porcupine Pillow 1981 46.12 -110.47
MT 10D07S Snotel Northeast Entrance Pillow 2240 45.00 -110.00
MT 10D16S Snotel Shower Falls Pillow 2469 45.40 -110.95
MT 11E07S Snotel Twenty-One Mile 2179 44.90 -111.05
MT 12C21S Snotel Neveda Creek Pillow 1975 46.83 -112.52
MT 13A24S Snotel Emery Creek Pillow 1326 48.43 -113.93
MT 13A26S Snotel Pike Creek Pillow 1807 48.30 -113.33
MT 13B07S Snotel North Fork Jocko Pillow 1929 47.27 -113.77
MT 13B24S Snotel Moss Peak Pillow 2067 47.68 -113.97
MT 13C03S Snotel Skalkaho Summit Pillow 2210 46.25 -113.77
MT 13C44S Snotel Barker Lake Pillow 2515 46.10 -113.13
MT 14D02S Snotel Nez Perce Camp Pillow 1722 45.73 -114.48
MT 15A08S Snotel Banfield Mtn Pillow 1707 48.57 -115.45
MT 09A01 Snow course Rocky Boy 1433 48.18 -109.65
MT 09D01 Snow course Camp Senia 2405 45.17 -109.47
MT 10C01 Snow course Kings Hill 2286 46.85 -110.70
MT 10C02 Snow course Grasshopper 2134 46.52 -110.77
MT 10D01 Snow course New World 2103 45.57 -110.92
MT 10D03 Snow course Hood Meadow 2012 45.48 -110.97
MT 10D04 Snow course Devils Slide 2469 45.40 -110.95
MT 10D05 Snow course Crevice Mtn 2560 45.03 -110.60
MT 10D06 Snow course Independence 2393 45.22 -110.25
MT 10D07 Snow course Northeast Entrance 2240 45.00 -110.00
MT 11E08 Snow course West Yellostone 2042 44.67 -111.32
MT 11EO6 Snow course Hebgen Dam 1996 44.87 -111.33
MT 12A01 Snow course Freight Creek 1829 48.02 -112.83
MT 12B07 Snow course Goat Mountain 2134 47.65 -112.92
MT 12B09 Snow course Five Bull 1737 47.45 -112.82
MT 12C01 Snow course Stemple Pass 2012 46.88 -112.48
MT 12C02 Snow course Ten Mile Lower 2012 46.45 -112.28
MT 12C03 Snow course Ten Mile Middle 2073 46.43 -112.30
MT 12C04 Snow course Ten Mile Upper 2438 46.42 -112.28
MT 12C05 Snow course Chessman Res 1890 46.47 -112.18
MT 12D01 Snow course Pipestone Pass 2195 45.85 -112.45
MT 13A02 Snow course Desert Mtn 1707 48.42 -113.95
MT 13A05 Snow course Marias Pass 1600 48.32 -113.35
MT 13A16 Snow course Mineral Creek 1219 48.77 -113.82
MT 13B03 Snow course Big Creek 2057 47.68 -113.95
MT 13B10 Snow course Coyote Hill 1280 47.33 -113.58
MT 13C01 Snow course Stuart Mtn 2256 47.00 -113.92
MT 13C02 Snow course Slide Rock Mtn 2164 46.58 -113.57
MT 13C04 Snow course Intergaard 1966 46.22 -113.28
MT 13C06 Snow course Stuart Mill 1981 46.17 -113.27
MT 13C07 Snow course Storm Lake 2371 46.08 -113.27
MT 13C09 Snow course El Dorado Mine 2377 46.43 -113.07
MT 13C10 Snow course Gold Creek Lake 2195 46.45 -113.07
MT 13D01 Snow course East Fork 1646 45.92 -113.72
MT 13D02 Snow course Gibbons Pass 2164 45.70 -113.95
MT 13D09 Snow course Gold Stone 2469 45.15 -113.53
MT 13D15 Snow course Elk Horn Springs 2377 45.47 -113.10
MT 13D27 Snow course Jahnke Lake Trail 2195 45.22 -113.50
MT 14A03 Snow course Hell Roaring Divide 1759 48.50 -114.35
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MT 14A05 Snow course Logan Creek 1311 48.33 -114.65
MT 14A06 Snow course Kishenehn 1186 48.97 -114.42
MT 14A07 Snow course Weasel Divide 1661 48.95 -114.73
MT 14D01 Snow course Nez Perce Pass 2003 45.72 -114.50
MT 15A01 Snow course Red Mountain 1829 48.92 -115.35
MT 15B11 Snow course Baree Creek 1676 47.97 -115.53
MT 15C01 Snow course Hoodoo Creek 1798 46.98 -115.02
OR 17D02S Snotel Aneroid Lake #2 Snotel 2225 45.22 -117.20
OR 18D04S Snotel Emigrant Springs Snotel 1196 45.55 -118.45
OR 18D06S Snotel Lucky Strike Snotel 1539 45.28 -118.85
OR 18D09S Snotel Beaver Resev Snotel 1570 45.13 -118.22
OR 18D19S Snotel High Ridge Pillow 1518 45.68 -118.10
OR 18D20S Snotel Bowman Spr Snotel 1396 45.37 -118.45
OR 18E03S Snotel Eilertson Mead Snotel 1646 44.85 -118.12
OR 18E05S Snotel Bourne Pillow 1768 44.82 -118.20
OR 18E08S Snotel Gold Center Snotel 1628 44.77 -118.28
OR 18E09S Snotel Tipton Snotel 1570 44.67 -118.37
OR 18E16S Snotel Blue Mtn Springs Snotel 1798 44.25 -118.50
OR 18E18S Snotel Lake Creek Snotel 1585 44.18 -118.60
OR 18G01S Snotel Silvies Snotel 2103 42.75 -118.68
OR 18G02S Snotel Fish Creek Snotel 2408 42.70 -118.63
OR 19E03S Snotel Derr Snotel 1728 44.45 -119.93
OR 20E02S Snotel Ochoco Meadows Snotel 1585 44.43 -120.33
OR 20G02S Snotel Summer Rim Snotel 2164 42.70 -120.82
OR 20G09S Snotel Strawberry Snotel 1756 42.10 -121.85
OR 21D01S Snotel Greenpoint Snotel 975 45.62 -121.70
OR 21D14S Snotel Peavine Ridge Snotel 1067 45.05 -121.93
OR 21E04S Snotel Marion Forks Pillow 792 44.58 -121.97
OR 21E05S Snotel Santiam Jct Snotel 1143 44.43 -121.93
OR 21E06S Snotel Hogg Pass Snotel 1451 44.42 -121.87
OR 21E07S Snotel Mckenzie Snotel 1463 44.20 -121.87
OR 21E13S Snotel Three Creeks Meadow Snotel 1722 44.15 -121.63
OR 21F12S Snotel Silver Creek Pillow 1743 42.95 -121.18
OR 21F21S Snotel Irish Taylor Snotel 1676 43.82 -121.95
OR 22E07S Snotel Jump Off Joe Snotel 1067 44.38 -122.17
OR 22F03S Snotel Cascade Summit Snotel 1487 43.58 -122.02
OR 22F14S Snotel Summit Lake Snotel 1707 43.45 -122.13
OR 22F18S Snotel Diamond Lake Snotel 1620 43.18 -122.13
OR 22F43S Snotel Roaring River Pillow 1494 43.90 -122.03
OR 22FO4S Snotel Salt Creek Falls Snotel 1219 43.60 -122.07
OR 22G12S Snotel Fourmile Lake Snotel 1829 42.40 -122.22
OR 22G13S Snotel Billie Creek Snotel 1615 42.42 -122.28
OR 22G14S Snotel Fish Lake Snotel 1422 42.38 -122.42
OR 22G21S Snotel Big Red Mtn Pillow 1905 42.05 -122.85
OR 17D06 Snow course Moss Springs 1783 45.27 -117.68
OR 17D08 Snow course Schneider Meadows 1646 45.00 -117.15
OR 17E05 Snow course Dooley Mtn 1655 44.50 -117.83
OR 18D03 Snow course Tollgate 1545 45.83 -118.13
OR 18D05 Snow course Meacham 1311 45.50 -118.42
OR 18E02 Snow course Anthony Lake 2173 44.97 -118.23
OR 18F01 Snow course Rock Springs 1554 43.98 -118.98
OR 18F04 Snow course Stinking Water 1463 43.70 -118.53
OR 19D02 Snow course Arbuckle Mtn 2377 45.18 -119.25
OR 19E08 Snow course Starr Ridge 1570 44.27 -119.02
OR 19G01 Snow course Hart Mtn Am 1935 42.48 -119.70
OR 20E02 Snow course Marks Creek 1384 44.48 -120.40
OR 20G06 Snow course Quartz Mtn 1622 42.27 -120.78
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OR 20G08 Snow course Camas Creek #1 1743 42.23 -120.28
OR 21D06 Snow course Brooks Meadow 1311 45.40 -121.50
OR 21D08 Snow course Mt Hood 1646 45.33 -121.72
OR 21D12 Snow course Clear Lake 1067 45.20 -121.72
OR 21D13 Snow course Clackamas Lake 1036 45.08 -121.75
OR 21E17 Snow course New Dutchman Flat 1951 44.00 -121.70
OR 21F22 Snow course Chemult Alt 1451 43.22 -121.80
OR 21G03 Snow course Taylor Butte 1554 42.70 -121.40
OR 21G08 Snow course Harriman Lodge 1265 42.45 -121.10
OR 22F16 Snow course North Umpqua 1286 43.28 -122.15
OR 22F17 Snow course Trap Creek 1158 43.25 -122.25
OR 22G02 Snow course Silver Burn 1134 42.92 -121.40
OR 22G05 Snow course Park Hq Rev 1996 42.90 -122.13
OR 22G06 Snow course Annie Spring 1835 42.88 -122.17
OR 22G16 Snow course Hyatt Prairie 1494 42.18 -122.47
OR 22G35 Snow course Siskiyo Summit 1411 42.07 -122.62
OR 22G40 Snow course Crystal 1265 42.67 -122.07
OR 22G41 Snow course Fort Klamath 1280 42.72 -122.00
OR 23G04 Snow course Althouse2 1786 44.77 -118.05
WA 19A02S Snotel Salmon Mdws Pillow 1372 48.67 -119.83
WA 20A05S Snotel Harts Pass Pillow 1981 48.72 -120.65
WA 20A09S Snotel Rainy Pass Pillow 1457 48.55 -120.72
WA 20A12S Snotel Park Creek Pillow 1402 48.45 -120.92
WA 20A23S Snotel Lyman Lake Pillow 1798 48.20 -120.92
WA 20A40S Snotel Miners Ridge Pillow 1890 48.17 -120.98
WA 20B02S Snotel Blewett Pass Pillow 1301 47.35 -120.68
WA 21B04S Snotel Fish Lake Pillow 1027 47.52 -121.07
WA 21B10S Snotel Stampede Pass Pillow 1177 47.28 -121.33
WA 21B55S Snotel Olallie Mdws Pillow 1128 47.37 -121.43
WA 21C35S Snotel Paradise Pillow 1561 46.83 -121.72
WA 17A01 Snow course Bunchgrass Meadow 1524 48.27 -117.28
WA 17A02 Snow course Boyer Mountain 1600 48.20 -117.43
WA 19A01 Snow course Mutton Creek No 2 1829 48.70 -119.87
WA 19A03 Snow course Rusty Creek 1219 48.53 -119.87
WA 1B13S Snow course Corral Pass Pillow 1829 47.02 -121.47
WA 20A01 Snow course Freezeout Cr Tr 1067 48.95 -120.95
WA 20A08 Snow course Meadow Cabins 579 48.58 -120.93
WA 20A12 Snow course Park Creek Ridge 1402 48.45 -120.92
WA 20A22 Snow course Cloudy Pass Am 1981 48.20 -120.92
WA 20A24 Snow course Little Meadows Am 1608 48.20 -120.90
WA 21A01 Snow course Beaver Pass 1122 48.88 -121.25
WA 21A04 Snow course Beaver Creek Trail 671 48.83 -121.20
WA 21B01 Snow course Stevens Pass 1281 47.73 -121.08
WA 21B08 Snow course Tunnel Avenue 747 47.32 -121.35
WA 21B09 Snow course Big Boulder Creek 975 47.43 -121.03
WA 21B14 Snow course Lake Cleelum 671 47.23 -121.07
WA 21C06 Snow course Cayuse Pass 1615 46.87 -121.53
WA 21C08 Snow course Bumping Lake 1036 46.87 -121.30
WA 21C10 Snow course Green Lake Pillow 1829 46.55 -121.17
WA 21C11 Snow course Ahtanum Rs 945 46.52 -121.02
WA 21C13 Snow course Surprise Lakes 1295 46.10 -121.75
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APPENDIX II

Monthly Cooperative Precipitation Stations

State Coop 
ID Station Name Elev 

(meters)
Lat 

(North)
Long 

(West)
Years of 

Data
% Missing 

Data
ID 100010 Aberdeen Experiment Stn 1342.6 42.95 -112.83 64 0
ID 100227 American Falls 3 1342.6 42.78 -112.92 64 0
ID 100282 Anderson Dam 1183.2 43.37 -115.45 61 0
ID 100375 Arco 1623.1 43.63 -113.30 63 11
ID 100448 Arrowrock Dam 998.2 43.60 -115.92 64 0
ID 100470 Ashton 1588.6 44.07 -111.45 64 0
ID 100667 Bayview Model Basin 632.5 47.98 -116.57 57 0
ID 100915 Blackfoot Fire Dept 1382.6 43.20 -112.35 64 11
ID 101002 Bliss 4 Nw 998.2 42.95 -115.02 57 0
ID 101079 Bonners Ferry 539.5 48.70 -116.32 64 0
ID 101408 Cambridge 807.7 44.57 -116.68 64 0
ID 101514 Cascade 1 Nw 1492.3 44.52 -116.05 62 0
ID 101663 Challis 1577.3 44.50 -114.23 56 0
ID 101671 Chilly Barton Flat 1908 43.98 -113.83 59 0
ID 101956 Coeur D’alene 650.1 47.68 -116.80 56 2
ID 102187 Council 899.2 44.73 -116.43 64 0
ID 102444 Deer Flat Dam 765 43.58 -116.75 64 0
ID 102676 Driggs 1865.4 43.73 -111.12 64 3
ID 102707 Dubois Experiment Stn 1661.2 44.25 -112.20 65 2
ID 102875 Elk City 1 NE 1236.9 45.83 -115.47 53 0
ID 102892 Elk River 1 S 889.4 46.77 -116.18 52 0
ID 102942 Emmett 2 E 728.5 43.85 -116.47 64 0
ID 103108 Fairfield Ranger Stn 1543.8 43.35 -114.78 57 5
ID 103143 Fenn Ranger Station 475.5 46.10 -115.53 69 7
ID 103297 Fort Hall 1 1360.9 43.05 -112.42 64 0
ID 103448 Garden Valley 944.9 44.10 -115.97 65 5
ID 103631 Glenns Ferry 751.6 42.93 -115.32 64 0
ID 103732 Grace 1691.6 42.58 -111.75 64 0
ID 103760 Grand View 4 Nw 731.5 43.02 -116.18 61 0
ID 103771 Grangeville 1021.1 45.93 -116.12 65 3
ID 103882 Grouse 1829.1 43.72 -113.55 64 5
ID 103964 Hamer 4 Nw 1460 43.97 -112.27 64 8
ID 104140 Hazelton 1237.5 42.60 -114.13 64 0
ID 104268 Hill City 1 W 1554.5 43.30 -115.07 64 0
ID 104295 Hollister 1379.2 42.35 -114.57 64 0
ID 104384 Howe 1469.1 43.78 -113.00 64 5
ID 104442 Idaho City 1208.5 43.83 -115.83 64 0
ID 104456 Idaho Falls 16 1776.4 43.35 -111.78 49 0
ID 104598 Island Park 1917.2 44.42 -111.37 64 0
ID 104670 Jerome 1140 42.73 -114.52 64 0
ID 105038 Kuna 819.9 43.48 -116.42 54 4
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ID 105241 Lewiston Nez Perce Cnty Ap 437.7 46.37 -117.02 56 0
ID 105275 Lifton Pumping Stn 1806.2 42.12 -111.32 64 0
ID 105559 Malad City 1362.5 42.15 -112.28 60 0
ID 105685 May 2 1539.2 44.57 -113.90 54 0
ID 105708 Mccall 1531.6 44.88 -116.10 64 0
ID 105980 Minidoka Dam 1269.2 42.68 -113.50 57 0
ID 106152 Moscow U Of I 810.8 46.72 -116.97 64 0
ID 106174 Mountain Home 957.1 43.13 -115.72 65 0
ID 106424 Nezperce 987.6 46.23 -116.25 52 0
ID 106542 Oakley 1389.9 42.23 -113.90 64 0
ID 106764 Palisades 1641.3 43.35 -111.22 47 0
ID 106877 Paul 1 1264.9 42.63 -113.77 64 0
ID 106891 Payette 655.3 44.08 -116.93 64 0
ID 107211 Pocatello Regional Ap 1353.3 42.92 -112.57 55 0
ID 107301 Potlatch 3 792.5 46.95 -116.88 63 0
ID 107673 Richfield 1305.2 43.05 -114.15 64 0
ID 107706 Riggins 548.6 45.42 -116.32 64 0
ID 108022 Saint Anthony 1 Wnw 1508.8 43.97 -111.72 64 0
ID 108062 Saint Maries 1 W 707.1 47.32 -116.58 64 0
ID 108137 Sandpoint Exp Station 640.1 48.30 -116.55 64 0
ID 108380 Shoshone 1 Wnw 1204 42.93 -114.42 64 0
ID 108676 Stanley 1911.4 44.22 -114.93 40 0
ID 108928 Swan Falls P H 708.7 43.25 -116.38 64 0
ID 109498 Wallace Woodland Park 896.1 47.48 -115.92 64 0
ID 109560 Warren 1800.5 45.27 -115.68 45 0
MT 240364 Augusta 1240.5 47.50 -112.40 65 2
MT 240375 Austin 1 W 1460 46.63 -112.27 54 2
MT 240392 Babb 6 Ne 1310.6 48.93 -113.37 65 3
MT 240622 Bozeman Gallatin Field 1349.3 45.78 -111.17 62 0
MT 240755 Bigfork 13 S 887 47.88 -114.03 65 2
MT 240770 Big Sandy 844.3 48.13 -110.07 64 3
MT 240780 Big Timber 1249.7 45.83 -109.95 65 2
MT 240807 Billings Logan Int’l Arpt 1091.5 45.80 -108.55 63 0
MT 240877 Blackleaf 1290.8 48.02 -112.43 56 5
MT 241008 Boulder 1494.7 46.23 -112.12 65 2
MT 241044 Bozeman Montana St Univ 1497.5 45.67 -111.05 65 2
MT 241102 Bridger 2 N 1092.1 45.33 -108.92 63 5
MT 241318 Butte Bert Mooney Ap 1678.2 45.97 -112.50 63 2
MT 241552 Cascade 5 S 1024.1 47.22 -111.72 65 2
MT 241692 Chester 954.6 48.50 -110.97 63 5
MT 241722 Chinook 737.6 48.58 -109.23 65 3
MT 241737 Choteau 1172 47.82 -112.20 65 3
MT 241938 Columbus 1097.9 45.65 -109.27 65 2
MT 241974 Conrad 1082 48.18 -111.97 65 3
MT 242104 Creston 896.1 48.18 -114.13 56 2
MT 242173 Cut Bank Municipal Ap 1169.8 48.60 -112.38 64 2
MT 242221 Darby 1182.6 46.02 -114.18 65 2
MT 242347 Denton 1100.3 47.32 -109.93 65 3
MT 242409 Dillon Wmce 1593.5 45.22 -112.65 66 3
MT 242421 Divide 1630.7 45.75 -112.75 57 4
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MT 242438 Dodson 694.9 48.40 -108.25 53 0
MT 242500 Drummond 1219.2 46.63 -113.18 41 0
MT 242793 Ennis 1509.7 45.35 -111.72 66 3
MT 242820 Ethridge 1080.2 48.55 -112.13 56 7
MT 242857 Fairfield 1214 47.62 -111.98 65 2
MT 242996 Fishtail 1371.6 45.45 -109.50 53 0
MT 243013 Flatwillow 4 Ene 954.9 46.85 -108.32 65 2
MT 243110 Fort Assinniboine 796.4 48.50 -109.80 67 4
MT 243113 Fort Benton 801.9 47.82 -110.67 65 2
MT 243139 Fortine 1 N 914.4 48.78 -114.90 65 6
MT 243157 Fort Logan 4 Ese 1435.6 46.65 -111.10 54 7
MT 243346 Galata 16 Ssw 944.9 48.25 -111.40 56 4
MT 243445 Geraldine 954 47.60 -110.27 54 0
MT 243489 Gibson Dam 1399 47.60 -112.75 66 3
MT 243617 Goldbutte 7 N 1066.2 48.98 -111.40 64 5
MT 243707 Grant 5 Se 1761.7 44.93 -113.03 52 8
MT 243727 Grass Range 1063.8 47.03 -108.80 65 2
MT 243751 Great Falls Intl Arpt 1116.8 47.47 -111.38 63 2
MT 243885 Hamilton 1075.6 46.23 -114.17 65 2
MT 243929 Harlem 4 W 719.9 48.55 -108.87 65 3
MT 243939 Harlowton 1268.6 46.43 -109.83 65 3
MT 244038 Hebgen Dam 1977.8 44.87 -111.33 66 5
MT 244055 Helena Regional Airport 1166.8 46.60 -111.97 65 2
MT 244084 Heron 2 Nw 682.8 48.08 -116.00 65 2
MT 244241 Holter Dam 1062.8 46.98 -112.02 65 2
MT 244328 Hungry Horse Dam 963.2 48.35 -114.02 58 0
MT 244345 Huntley Experiment Stn 924.8 45.92 -108.25 65 0
MT 244447 Jackson 1975.1 45.37 -113.42 54 13
MT 244512 Joplin 1013.5 48.57 -110.77 66 5
MT 244766 Kremlin 871.7 48.52 -110.10 53 0
MT 244820 Lakeview 2045.2 44.60 -111.82 63 3
MT 244978 Lewistown 11 Sse 1513.3 46.90 -109.42 56 0
MT 244985 Lewistown Municipal Ap 1263.4 47.05 -109.47 65 0
MT 245015 Libby 1 Ne Rs 638.9 48.40 -115.53 65 0
MT 245020 Libby 32 Sse 1097.3 47.97 -115.22 56 0
MT 245030 Lima 1912 44.63 -112.58 65 0
MT 245040 Lincoln Ranger Stn 1394.5 46.95 -112.65 58 0
MT 245080 Livingston 12 S 1484.4 45.48 -110.57 53 0
MT 245086 Livingston Mission Fld 1415.2 45.70 -110.43 65 0
MT 245153 Loma 1 Wnw 786.4 47.95 -110.53 55 0
MT 245387 Martinsdale 3 Nnw 1463 46.50 -110.33 63 0
MT 245608 Menard 3 Ne 1540.2 46.00 -111.13 51 0
MT 245745 Missoula International Ap 972.9 46.92 -114.10 63 0
MT 245961 Mystic Lake 1994.6 45.25 -109.73 65 0
MT 246157 Norris Madison Ph 1446.3 45.48 -111.63 65 0
MT 246472 Philipsburg R S 1606.3 46.32 -113.30 48 0
MT 246615 Polebridge 1072.9 48.77 -114.28 57 0
MT 246635 Polson 917.4 47.68 -114.18 60 0
MT 246747 Pryor 1239.9 45.43 -108.53 54 0
MT 246862 Rapelje 4 S 1257.3 45.92 -109.25 65 0
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MT 247214 Roundup 973.2 46.43 -108.53 65 0
MT 247228 Roy 8 Ne 1050 47.43 -108.85 65 0
MT 247286 St Ignatius 883.9 47.32 -114.10 65 0
MT 247448 Seeley Lake R S 1249.7 47.22 -113.52 65 0
MT 247620 Simpson 6 N Wildhorse 858 49.00 -110.22 65 0
MT 247894 Stevensville 1028.7 46.52 -114.08 66 0
MT 247964 Sula 3 Ene 1364 45.85 -113.93 49 0
MT 247996 Sunburst 8 E 1127.8 48.88 -111.73 53 0
MT 248021 Sun River 4 S 1097.3 47.48 -111.73 64 0
MT 248043 Superior 826 47.20 -114.88 65 0
MT 248324 Townsend 1170.4 46.33 -111.53 65 0
MT 248363 Trident 1230.2 45.95 -111.47 65 0
MT 248430 Twin Bridges 1409.7 45.55 -112.33 54 0
MT 248501 Valier 1161.3 48.32 -112.25 65 0
MT 248809 West Glacier 961.3 48.50 -113.98 56 0
MT 248902 Whitefish 944.9 48.40 -114.37 62 0
MT 249033 Winifred 988.5 47.57 -109.38 65 0
MT 249067 Wisdom 1847.1 45.62 -113.45 66 0
MT 249082 Wise River 3 Wnw 1746.5 45.80 -113.02 59 0
OR 350197 Antelope 6 Ssw 923.5 44.82 -120.75 64 0
OR 350356 Austin 3 S 1284.1 44.57 -118.48 64 0
OR 350412 Baker City Muni Ap 1024.4 44.85 -117.82 61 0
OR 350694 Bend 1115.6 44.05 -121.28 64 0
OR 350723 Beulah 996.7 43.92 -118.15 62 0
OR 350897 Bonneville Dam 18.9 45.63 -121.95 64 0
OR 351067 Brothers 1414.3 43.82 -120.60 45 0
OR 351546 Chemult 1450.8 43.23 -121.78 64 5
OR 351765 Condon 865.6 45.23 -120.18 65 2
OR 352135 Danner 1287.8 42.95 -117.33 64 6
OR 352440 Dufur 405.4 45.45 -121.13 65 3
OR 353038 Fossil 807.7 45.00 -120.22 60 7
OR 353095 Fremont 5 Nw 1404.8 43.40 -121.22 58 9
OR 353542 Grizzly 1107.9 44.52 -120.93 66 6
OR 353604 Halfway 812.3 44.88 -117.12 64 6
OR 353692 Hart Mountain Refuge 1711.8 42.55 -119.65 65 2
OR 353827 Heppner 574.5 45.37 -119.57 65 2
OR 353847 Hermiston 1 Se 195.1 45.83 -119.27 60 5
OR 354003 Hood River Exp Stn 152.4 45.68 -121.52 65 2
OR 354098 Huntington 643.1 44.35 -117.25 65 5
OR 354291 John Day 933.6 44.42 -118.97 51 0
OR 354403 Keno 1254.6 42.13 -121.93 65 2
OR 354411 Kent 826 45.20 -120.70 65 2
OR 354506 Klamath Falls 2 Ssw 1249.1 42.20 -121.78 63 3
OR 354670 Lakeview 2 Nnw 1456.3 42.22 -120.37 66 5
OR 355162 Malheur Refuge Hdq 1252.4 43.27 -118.85 45 0
OR 355221 Marion Frks Fish Hatch 754.4 44.62 -121.95 55 0
OR 355335 Mc Dermitt 26 N 1360.6 42.42 -117.87 49 0
OR 355545 Mikkalo 6 W 472.4 45.47 -120.35 56 0
OR 355593 Milton Freewater 295.7 45.95 -118.42 65 0
OR 355641 Mitchell 2 Nw 806.2 44.58 -120.18 51 0
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OR 356179 Nyssa 662.9 43.88 -116.98 65 0
OR 356243 Ochoco Ranger Station 1211.6 44.40 -120.43 65 0
OR 356302 O O Ranch 1260.7 43.28 -119.32 53 0
OR 356405 Owyhee Dam 731.5 43.65 -117.25 65 0
OR 356426 Paisley 1328.9 42.70 -120.53 65 0
OR 356634 Pilot Rock 1 Se 524.3 45.48 -118.83 65 0
OR 356853 P Ranch Refuge 1278.6 42.83 -118.88 63 0
OR 357062 Redmond Roberts Field 927.5 44.25 -121.13 55 0
OR 357208 Riverside 7 Ssw 1030.2 43.45 -118.22 42 0
OR 357310 Rome 2 Nw 1037.8 42.87 -117.65 53 0
OR 357675 Seneca 1420.4 44.13 -118.98 62 0
OR 357736 Sheaville 1 Se 1408.2 43.12 -117.03 52 0
OR 358029 Squaw Butte Exp Station 1420.4 43.48 -119.72 65 0
OR 358726 Ukiah 1036.3 45.13 -118.93 63 0
OR 358746 Union Experiment Stn 842.8 45.20 -117.88 66 0
OR 358780 Unity 1228.6 44.43 -118.18 67 0
OR 358797 Vale 682.8 43.98 -117.25 65 0
OR 358997 Wallowa 890.9 45.57 -117.53 65 0
OR 359316 Wickiup Dam 1328.3 43.68 -121.68 64 0
WA 450668 Bickleton 919 46.00 -120.30 64 8
WA 450945 Buckley 1 Ne 208.8 47.17 -122.00 64 0
WA 451395 Chewelah 509 48.28 -117.72 64 0
WA 451400 Chief Joseph Dam 249.9 48.00 -119.65 55 0
WA 451666 Conconully 707.1 48.55 -119.75 64 6
WA 451679 Concrete Ppl Fish Stn 59.4 48.53 -121.75 64 0
WA 451767 Coulee Dam 1 Sw 518.2 47.95 -119.00 58 0
WA 451968 The Dalles Muni Ap 71.6 45.62 -121.17 63 0
WA 451992 Darrington Ranger Stn 167.6 48.27 -121.60 64 0
WA 452007 Davenport 743.7 47.65 -118.15 64 0
WA 452030 Dayton 1 Wsw 474.6 46.32 -118.00 64 0
WA 452157 Diablo Dam 271.6 48.72 -121.13 64 0
WA 452505 Ellensburg 451.1 46.97 -120.53 52 4
WA 453529 Hartline 582.2 47.68 -119.12 64 8
WA 454077 Kahlotus 5 Ssw 473 46.58 -118.60 57 4
WA 454154 Kennewick 118.9 46.22 -119.10 64 0
WA 454338 Lacrosse 442 46.82 -117.88 64 0
WA 454446 Lake Wenatchee 611.1 47.83 -120.80 64 0
WA 454679 Lind 3 Ne 496.8 47.00 -118.57 64 0
WA 455525 Monroe 36.6 47.85 -121.98 64 0
WA 455659 Mount Adams Ranger Stn 594.4 46.00 -121.53 64 0
WA 455844 Newport 650.7 48.18 -117.05 64 0
WA 455946 Northport 411.5 48.90 -117.80 64 0
WA 456039 Odessa 466.3 47.33 -118.70 64 0
WA 456215 Othello 6 Ese 362.7 46.78 -119.05 62 0
WA 456262 Packwood 323.1 46.62 -121.67 62 0
WA 456610 Pomeroy 579.1 46.47 -117.58 64 0
WA 456880 Quincy 1 S 388.3 47.22 -119.85 63 0
WA 456909 Randle 1 E 274.3 46.53 -121.93 64 0
WA 456974 Republic 795.5 48.65 -118.73 61 0
WA 457059 Ritzville 1 Sse 557.8 47.12 -118.38 64 0
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WA 457180 Rosalia 731.5 47.23 -117.37 64 0
WA 457727 Smyrna 170.7 46.83 -119.67 50 0
WA 457773 Snoqualmie Falls 134.1 47.53 -121.83 64 0
WA 457938 Spokane International Ap 717.2 47.62 -117.53 62 0
WA 458034 Startup 1 E 51.8 47.87 -121.72 65 0
WA 458059 Stehekin 4 Nw 387.1 48.35 -120.73 64 0
WA 458207 Sunnyside 227.7 46.32 -120.02 64 0
WA 459012 Waterville 798.6 47.65 -120.07 64 0
WA 459058 Wellpinit 759 47.90 -118.00 65 0
WA 459074 Wenatchee 195.1 47.42 -120.32 64 0
WA 459238 Wilbur 679.7 47.75 -118.68 64 0
WA 459376 Winthrop 1 Wsw 534.9 48.45 -120.20 64 0
WA 459465 Yakima Air Terminal 324.3 46.57 -120.55 56 0
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APPENDIX III

Monthly Cooperative Stations for Snow

State Coop ID Station Name Elev 
(meters)

Lat 
(North)

Long 
(West)

Years of 
Data

% Missing 
Data

WA 450668 Bickleton 919 46.00 -120.30 63 6.3
WA 450945 Buckley 1 Ne 208.8 47.17 -122.00 64 0.0
WA 451233 Cedar Lake 475.5 47.42 -121.75 64 0.0
WA 451395 Chewelah 509 48.28 -117.72 64 0.0
WA 451586 Colfax 603.5 46.88 -117.35 55 3.6
WA 451666 Conconully 707.1 48.55 -119.75 64 18.8
WA 451679 Concrete Ppl Fish Stn 59.4 48.53 -121.75 64 0.0
WA 451767 Coulee Dam 1 Sw 518.2 47.95 -119.00 58 0.0
WA 451968 The Dalles Muni Ap 71.6 45.62 -121.17 60 0.0
WA 451992 Darrington Ranger Stn 167.6 48.27 -121.60 64 0.0
WA 452007 Davenport 743.7 47.65 -118.15 64 3.1
WA 452030 Dayton 1 Wsw 474.6 46.32 -118.00 59 0.0
WA 452505 Ellensburg 451.1 46.97 -120.53 52 5.8
WA 452614 Ephrata Municipal Ap 381 47.30 -119.52 53 1.9
WA 453529 Hartline 582.2 47.68 -119.12 64 9.4
WA 453546 Hatton 9 Se 460.2 46.72 -118.65 64 0.0
WA 454077 Kahlotus 5 Ssw 473 46.58 -118.60 55 0.0
WA 454154 Kennewick 118.9 46.22 -119.10 63 0.0
WA 454338 Lacrosse 442 46.82 -117.88 64 0.0
WA 454446 Lake Wenatchee 611.1 47.83 -120.80 64 7.8
WA 454486 Landsburg 163.1 47.38 -121.97 64 0.0
WA 454572 Leavenworth 3 S 343.8 47.55 -120.68 64 0.0
WA 454679 Lind 3 Ne 496.8 47.00 -118.57 64 0.0
WA 455231 Mcnary Dam 110 45.93 -119.30 50 0.0
WA 455387 Mill Creek Dam 358.1 46.08 -118.27 56 0.0
WA 455525 Monroe 36.6 47.85 -121.98 64 3.1
WA 455659 Mount Adams Ranger Stn 594.4 46.00 -121.53 64 9.4
WA 456896 Rainier Ohanapecosh 594.4 46.73 -121.57 63 12.7
WA 457938 Spokane International Ap 717.2 47.62 -117.53 62 8.1
WA 458009 Stampede Pass 1206.4 47.30 -121.33 50 6.0
WA 458059 Stehekin 4 Nw 387.1 48.35 -120.73 62 9.7
WA 458089 Stevens Pass 1240.5 47.73 -121.08 53 11.3
WA 459012 Waterville 798.6 47.65 -120.07 60 16.7
WA 459376 Winthrop 1 Wsw 534.9 48.45 -120.20 64 0.0
WA 459465 Yakima Air Terminal 324.3 46.57 -120.55 56 8.9
OR 350197 Antelope 6 Ssw 923.5 44.82 -120.75 51 0.0
OR 350356 Austin 3 S 1284.1 44.57 -118.48 63 9.5
OR 350412 Baker City Muni Ap 1024.4 44.85 -117.82 59 6.8
OR 350723 Beulah 996.7 43.92 -118.15 62 11.3
OR 351546 Chemult 1450.8 43.23 -121.78 64 10.9
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OR 353402 Government Camp 1213.1 45.30 -121.75 52 0.0
OR 354098 Huntington 643.1 44.35 -117.25 65 16.9
OR 354161 Ione 18 S 649.2 45.32 -119.85 65 18.5
OR 354291 John Day 933.6 44.42 -118.97 51 7.8
OR 354403 Keno 1254.6 42.13 -121.93 65 10.8
OR 354411 Kent 826 45.20 -120.70 65 13.8
OR 354506 Klamath Falls 2 Ssw 1249.1 42.20 -121.78 63 9.5
OR 354670 Lakeview 2 Nnw 1456.3 42.22 -120.37 63 7.9
OR 355139 Madras 679.7 44.62 -121.00 65 13.8
OR 355221 Marion Frks Fish Hatch 754.4 44.62 -121.95 56 8.9
OR 355734 Moro 570 45.48 -120.72 64 15.6
OR 356179 Nyssa 662.9 43.88 -116.98 64 18.8
OR 356243 Ochoco Ranger Station 1211.6 44.40 -120.43 65 12.3
OR 356426 Paisley 1328.9 42.70 -120.53 63 14.3
OR 356546 Pendleton E Or Regional Ap 452.9 45.70 -118.85 60 10.0
OR 356634 Pilot Rock 1 Se 524.3 45.48 -118.83 65 15.4
OR 356853 P Ranch Refuge 1278.6 42.83 -118.88 60 16.7
OR 356883 Prineville 888.5 44.30 -120.80 65 15.4
OR 357062 Redmond Roberts Field 927.5 44.25 -121.13 53 9.4
OR 357250 Rock Creek 1248.2 44.92 -118.07 65 7.7
OR 357310 Rome 2 Nw 1037.8 42.87 -117.65 51 13.7
OR 357354 Round Grove 1489.9 42.33 -120.88 50 14.0
OR 357675 Seneca 1420.4 44.13 -118.98 59 13.6
OR 357736 Sheaville 1 Se 1408.2 43.12 -117.03 52 19.2
OR 358029 Squaw Butte Exp Station 1420.4 43.48 -119.72 62 16.1
OR 358420 The Poplars 1313.7 43.27 -120.95 51 17.6
OR 358726 Ukiah 1036.3 45.13 -118.93 63 15.9
OR 358746 Union Experiment Stn 842.8 45.20 -117.88 66 9.1
OR 358780 Unity 1228.6 44.43 -118.18 61 18.0
OR 358797 Vale 682.8 43.98 -117.25 62 17.7
OR 358997 Wallowa 890.9 45.57 -117.53 64 14.1
OR 359316 Wickiup Dam 1328.3 43.68 -121.68 64 10.9
ID 100470 Ashton 1588.6 44.07 -111.45 64 0.0
ID 101022 Boise Air Terminal 857.7 43.57 -116.23 54 0.0
ID 101514 Cascade 1 Nw 1492.3 44.52 -116.05 62 0.0
ID 103882 Grouse 1829.1 43.72 -113.55 64 17.2
ID 104140 Hazelton 1237.5 42.60 -114.13 64 10.9
ID 104460 Idaho Falls 46 W 1505.1 43.53 -112.95 50 0.0
ID 104598 Island Park 1917.2 44.42 -111.37 64 4.7
ID 105275 Lifton Pumping Stn 1806.2 42.12 -111.32 64 0.0
ID 105414 Lowman 1194.8 44.08 -115.62 51 19.6
ID 105559 Malad City 1362.5 42.15 -112.28 60 6.7
ID 105685 May 2 Sse 1539.2 44.57 -113.90 54 13.0
ID 105708 Mccall 1531.6 44.88 -116.10 64 12.5
ID 105980 Minidoka Dam 1269.2 42.68 -113.50 57 8.8
ID 106152 Moscow U Of I 810.8 46.72 -116.97 64 10.9
ID 106542 Oakley 1389.9 42.23 -113.90 64 7.8
ID 107264 Porthill 541 49.00 -116.50 64 17.2
MT 240412 Baker 1 E 896.1 46.37 -104.27 65 10.8
MT 240807 Billings Logan Int’l Arpt 1091.5 45.80 -108.55 63 1.6
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MT 241044 Bozeman Montana St Univ 1497.5 45.67 -111.05 65 4.6
MT 241088 Bredette 804.1 48.55 -105.27 53 5.7
MT 241102 Bridger 2 N 1092.1 45.33 -108.92 63 6.3
MT 241127 Broadus 924.2 45.45 -105.40 65 3.1
MT 241231 Brusett 3 N 906.5 47.47 -107.32 65 4.6
MT 241297 Busby 1045.5 45.53 -106.97 65 9.2
MT 241318 Butte Bert Mooney Ap 1678.2 45.97 -112.50 61 1.6
MT 241552 Cascade 5 S 1024.1 47.22 -111.72 65 1.5
MT 242104 Creston 896.1 48.18 -114.13 56 8.9
MT 242173 Cut Bank Municipal Ap 1169.8 48.60 -112.38 62 1.6
MT 242404 Dillon Airport 1585 45.25 -112.55 54 3.7
MT 242421 Divide 1630.7 45.75 -112.75 57 3.5
MT 242629 East Glacier 1464.9 48.45 -113.22 51 5.9
MT 242857 Fairfield 1214 47.62 -111.98 65 7.7
MT 243013 Flatwillow 4 Ene 954.9 46.85 -108.32 65 3.1
MT 243089 Forks 4 Nne 792.2 48.78 -107.45 58 10.3
MT 243113 Fort Benton 801.9 47.82 -110.67 65 6.2
MT 243139 Fortine 1 N 914.4 48.78 -114.90 65 3.1
MT 243157 Fort Logan 4 Ese 1435.6 46.65 -111.10 54 7.4
MT 243445 Geraldine 954 47.60 -110.27 54 1.9
MT 243489 Gibson Dam 1399 47.60 -112.75 66 6.1
MT 243581 Glendive 632.8 47.10 -104.72 65 9.2
MT 243617 Goldbutte 7 N 1066.2 48.98 -111.40 63 4.8
MT 243707 Grant 5 Se 1761.7 44.93 -113.03 51 5.9
MT 243727 Grass Range 1063.8 47.03 -108.80 65 7.7
MT 243751 Great Falls Intl Arpt 1116.8 47.47 -111.38 63 1.6
MT 243929 Harlem 4 W 719.9 48.55 -108.87 64 14.1
MT 243939 Harlowton 1268.6 46.43 -109.83 65 3.1
MT 244038 Hebgen Dam 1977.8 44.87 -111.33 65 3.1
MT 244055 Helena Regional Airport 1166.8 46.60 -111.97 57 1.8
MT 244084 Heron 2 Nw 682.8 48.08 -116.00 65 3.1
MT 244386 Ingomar 14 Ne 851.9 46.73 -107.20 51 5.9
MT 244512 Joplin 1013.5 48.57 -110.77 65 10.8
MT 244985 Lewistown Municipal Ap 1263.4 47.05 -109.47 62 1.6
MT 245020 Libby 32 Sse 1097.3 47.97 -115.22 56 5.4
MT 245045 Lindsay 819.9 47.23 -105.15 54 7.4
MT 245080 Livingston 12 S 1484.4 45.48 -110.57 53 3.8
MT 245086 Livingston Mission Fld 1415.2 45.70 -110.43 62 1.6
MT 245153 Loma 1 Wnw 786.4 47.95 -110.53 54 5.6
MT 245285 Lustre 4 Nnw 890.9 48.45 -105.93 55 3.6
MT 245387 Martinsdale 3 Nnw 1463 46.50 -110.33 62 6.5
MT 245572 Medicine Lake 3 Se 591.9 48.48 -104.45 66 6.1
MT 245596 Melstone 890 46.60 -107.87 65 6.2
MT 245690 Miles City F Wiley Fld 799.8 46.43 -105.88 63 3.2
MT 245745 Missoula International Ap 972.9 46.92 -114.10 63 1.6
MT 245754 Mizpah 4 Nnw 755.9 46.28 -105.30 56 7.1
MT 245961 Mystic Lake 1994.6 45.25 -109.73 65 3.1
MT 246238 Opheim 12 Sse 894.9 48.70 -106.32 61 1.6
MT 246615 Polebridge 1072.9 48.77 -114.28 57 12.3
MT 246747 Pryor 1239.9 45.43 -108.53 54 9.3
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MT 246862 Rapelje 4 S 1257.3 45.92 -109.25 65 7.7
MT 246918 Red Lodge 2 N 1676.4 45.22 -109.23 65 3.1
MT 247034 Ridgeway 1 S 1010.7 45.50 -104.45 52 0.0
MT 247228 Roy 8 Ne 1050 47.43 -108.85 65 1.5
MT 247286 St Ignatius 883.9 47.32 -114.10 65 3.1
MT 247382 Savage 602 47.45 -104.33 65 3.1
MT 247448 Seeley Lake R S 1249.7 47.22 -113.52 65 4.6
MT 247540 Shonkin 7 S 1310.6 47.53 -110.58 51 9.8
MT 247560 Sidney 588.6 47.73 -104.15 56 5.4
MT 247620 Simpson 6 N Wildhorse 858 49.00 -110.22 65 3.1
MT 248363 Trident 1230.2 45.95 -111.47 65 9.2
MT 248569 Vida 6 Ne 696.2 47.88 -105.37 65 7.7
MT 248809 West Glacier 961.3 48.50 -113.98 56 3.6
MT 248857 West Yellowstone 2042.1 44.67 -111.82 58 12.1
MT 248939 Whitewater 711.1 48.77 -107.63 54 3.7
MT 249175 Wyola 1 Sw 1136.9 45.12 -107.40 65 7.7
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APPENDIX IV

FAUNMAP Holocene Bison Sites
Site ID Site Name Unit Name State ResAge Lat Long

1522 Bison Rockshelter Layer ID Lhol 44.08 -112.92

1511 Challis Bison Jump Layer ID Hist 44.37 -114.12

1506 Five Fingers Buffalo Jump Assemblage ID Mhol 42.37 -116.00

1502 Malad Hill Occupation ID Lhol 42.25 -112.12

55 Middle Butte Cave Assemblage ID LMHol 43.37 -112.62

18 Moonshiner Assemblage ID Ehol 43.37 -112.62

1497 Owl Cave Layer ID Mhol 43.50 -112.38

1510 Quill Cave Layer ID Hol 44.37 -114.12

1523 Veratic Rock Shelter Layers ID Hist 44.08 -112.92

1498 Western Canyon Rockshelter Layer ID Mhol 42.00 112.00

37 Wilson Butte Cave Stratum ID Mhol 42.77 -114.22

2849 24CA287 Assemblage MT Hol 47.50 -111.25

345 24GF250 Assemblage MT Lhol 47.50 -106.75

641 Antonsen Areas MT Lhol 45.66 -111.16

709 Ash Coulee Assemblage MT Hhol 46.75 -105.25

570 Big Lip Assemblage MT Lhol 45.00 -108.25

346 Birdtail Butte Assemblage MT Lhol 48.12 -109.00

588 Blacktail Cave Alcove/Cave MT Mhol 47.08 -112.28

575 Bootlegger Trail Units MT Lhol 48.25 -111.25

572 County Line Assemblage MT Lhol 46.87 -113.75

590 Drake Levels MT Lhol 45.75 -108.62

574 Ellisons Rock Midden MT Lhol 45.87 -106.62

577 False Cougar Cave Natural Stratum MT LMHol 45.12 -108.25

591 Hagen Assemblage MT Hol 47.00 -104.62

374 Hoffer Areas MT Lhol 47.75 -109.87

569 Holmes Terrace MT Hhol 47.62 -109.62

343 Kobold Level/Rockshelter MT Lhol 45.25 -107.00

707 Mangus Occupation MT Lhol 45.25 -107.87

571 Montana Ice Cave Assemblage MT Hol 46.75 -109.00

579 Morse Creek #1 Assemblage MT Hol 46.62 -113.12

592 Pictograph Cave Units MT LMHol 45.62 -108.37

2850 Red Rock Springs Assemblage MT Lhol 44.87 -112.75

2248 Risley Bison Kill Assemblage MT Hhol 47.37 -112.37

576 Shield Trap Stratum MT MHol 45.12 -108.25

708 Sorenson Occupation MT Mhol 45.25 -107.87

1065 Connley Cave No. 3 Stratum OR Hhol 43.25 -121.00

1066 Connley Cave No. 4 Stratum 1-4 OR EMHol 43.25 -121.00

1067 Connley Cave No. 5 Stratum 1-3 OR EMHol 43.25 -121.00

1543 Ray Assemblage OR Hol 44.87 -116.87
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1542 Robinette Rockshelter Assemblage OR Hhol 44.75 -117.00

1050 45AD2 Levels WA Hhol 47.00 -118.37

1147 45AS80 House WA Lhol 46.37 -117.12

2891 Aveys Orchard Assemblage WA Lhol 47.37 -120.25

1036 Berrians Island Assemblage WA Hist 46.00 -119.37

1425 Chief Joseph dam Site 
Hudnut 

and Kartar 
Component

WA Mhol 48.12 -119.12

1053 Ferry County salvage sites Burials WA Hhol 48.62 -118.12

1038 Lind Coulee Bed WA EMHol 47.15 -119.00

1148 Pig Farm House WA Hhol 46.37 -117.12

1146 Timothy’s Village WA Mhol 46.37 -117.12

2911 Willow Creek Assemblage WA Hol 46.75 -118.00
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